
Collision Distance Estimation for High-dof
Robot Systems: A Learning-Based Approach

JIHWAN KIM

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in the
DEPARTMENT OF MECHANICAL ENGINEERING

at
SEOUL NATIONAL UNIVERSITY

February 2025

ABSTRACT

Collision Distance Estimation for High-dof
Robot Systems: A Learning-Based Approach

by

Jihwan Kim

Department of Mechanical Engineering

Seoul National University

Collision distance estimation is a critical component in robot path planning and

obstacle avoidance. While traditional geometric algorithms have been effective in cer-

tain contexts, recent advancements in learning-based robot path planning algorithms and

sampling-based planning techniques have highlighted their limitations. These modern

approaches often require rapid, parallel computation of collision distances for multiple

configurations and their derivatives, which traditional methods struggle to provide effi-

ciently. As a result, these limitations have spurred the development of learning-based

approaches for collision distance estimation.

i

However, existing learning-based methods encounter significant challenges when ap-

plied to complex, high-dof robot systems. These challenges include difficulties in dataset

construction for the high-dimensional configuration space, the inherent complexity of the

collision distance function, and limited generalizability to minor environmental changes.

Consequently, there is a pressing need for more sophisticated and adaptable collision

distance estimation techniques.

This thesis presents two primary contributions to address these challenges. First,

we introduce an active learning strategy for efficient dataset construction in high-dof

robot systems. This method focuses on sampling the most informative configurations

near collision boundaries, significantly improving the quality of training data and en-

hancing model performance, particularly in critical regions.

Second, we propose PairwiseNet, an innovative method for pairwise collision dis-

tance learning. PairwiseNet focuses on predicting the minimum distance between pairs

of elements within the robot system rather than directly estimating the collision dis-

tance of the entire system. This approach simplifies the learning task and demonstrates

remarkable generalizability across various robot configurations.

Extensive experiments conducted on complex robot systems, including high-dof multi-

arm systems and single-arm robots in obstacle-rich environments, validate the effective-

ness of our approaches. Results show significant improvements in collision distance re-

gression error, collision checking accuracy, and false positive rates compared to existing

methods. Our contributions advance the state-of-the-art in collision distance estimation

for complex robot systems, offering more accurate, efficient, and adaptable solutions.

ii

Keywords: Collision distance, machine learning, dataset construction, active learning,

pairwise collision distance, path planning, collision avoidance.

Student Number: 2019-24947

iii

iv

Contents

Abstract i

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Collision Distance Estimation for Path Planning 1

1.2 Learning-based Collision Distance Estimation 2

1.2.1 Dataset Construction . 3

1.2.2 Inherent Complexity of the Collision Distance Function 4

1.2.3 Generalizability to Minor Environmental Changes 7

1.3 Contribution . 8

1.3.1 Active Learning of the Collision Distance Function 8

1.3.2 PairwiseNet: Pairwise Collision Distance Learning 9

1.4 Organization . 11

2 Preliminaries: Collision Distance 15

v

2.1 Introduction . 15

2.2 Collision Distance . 16

2.3 Classical Collision Distance Calculation 19

3 Active learning of the Collision Distance Function 23

3.1 Introduction . 23

3.2 Related Works . 27

3.3 Collision Distance Learning . 29

3.3.1 Problem Formulation . 29

3.3.2 Neural Network Model . 30

3.4 Methods . 32

3.4.1 Link SE(3) Configuration Space Representation 32

3.4.2 Active Learning-based Training with Boundary Data Sampling . 34

3.5 Learning Performance Evaluation . 41

3.5.1 Evaluation Setting . 41

3.5.2 Evaluation Results . 44

3.5.3 Time and Memory . 47

3.5.4 Compared to Other Representations of SE(3) 48

3.6 Real-world Experiments . 49

3.7 Conclusion . 51

4 PairwiseNet: Pairwise Collision Distance Learning 53

4.1 Introduction . 53

4.2 Related Works . 57

4.3 Learning Pairwise Collision Distance . 59

4.3.1 Problem Formulation . 59

4.3.2 Strategy for Decomposing System Elements 61

vi

4.3.3 Network Architecture . 61

4.3.4 Efficient Inference Strategy of PairwiseNet 62

4.4 Collision Distance Learning for Multi-arm Robot Systems 63

4.4.1 Experimental Setting . 63

4.4.2 Results . 67

4.5 Collision Distance Learning for a Single-arm Systems with Obstacles . . 72

4.5.1 Experimental Setting . 73

4.5.2 Results . 73

4.6 Inference Time of PairwiseNet . 75

4.7 Conclusion . 78

5 Planning with Collision Distance Estimator 79

5.1 Introduction . 79

5.2 Offline Trajectory Optimization for a Four-arm Robot System 80

5.3 Real-time Collision Avoidance for a Single-arm Robot System with Ob-

stacles . 85

5.4 Conclusion . 89

6 Conclusion 91

6.1 Summary . 91

6.2 Future Work . 93

A Appendix: Active Learning of the Collision Distance Function 95

A.1 Hyperparameters of our Active Learning-based Training Procedure . . . 95

A.2 Impact of Exploration-Exploitation Balance on Model Performance . . . 98

A.3 Comparison with Existing Balanced Dataset Generation Method 100

vii

B Appendix: PairwiseNet 103

B.1 Hyperparameters of PairwiseNet and Baseline Methods 103

B.2 Geometric Representations of Robot Links for Collision Checking . . . 104

B.3 The Collision-free Guaranteed Threshold 107

B.4 Training Complexity of PairwiseNet . 108

B.5 Comparison with Direct Point Cloud Distance Computation 110

B.6 Generalization Performance on Unseen Objects 113

Bibliography 116

Abstract 123

viii

List of Tables

3.1 Collision distance estimation performance comparison: SE3NN with ac-

tive learning-based training versus baseline methods 46

3.2 Training time, inference time, and GPU memory requirements: Compar-

ison of SE3NN and baseline methods 47

3.3 Performance of other non-redundant input representations 49

4.1 Collision distance estimation performances of PairwiseNet versus base-

line methods . 69

4.2 Collision distance estimation performances of PairwiseNet for various

multi-arm systems . 72

4.3 Inference time comparison: PairwiseNet versus classical collision dis-

tance estimation methods . 77

A.1 Hyperparameters for our active learning-based training procedure 96

A.2 Performance comparison: our active learning-based training versus bal-

anced dataset approach . 101

B.1 Hyperparameters for training PairwiseNet and baseline methods 104

ix

B.2 Geometric complexity of original and simplified convex meshes for Panda

robot links . 105

B.3 Comparison of collision distance estimation errors across different geo-

metric approximations and PairwiseNet 107

B.4 The collision-free guaranteed thresholds of PairwiseNet and baseline meth-

ods . 108

B.5 Training Complexity of PairwiseNet . 109

B.6 Inference time comparison: PairwiseNet versus direct point cloud dis-

tance computation . 111

B.7 Performance evaluation of PairwiseNet’s generalization capability between

environments with different objects . 115

x

List of Figures

1.1 Illustration of the complex nature of collision distance function. (a) A

four-arm robot system. (b) Collision distance plot as the system follows

a smooth joint trajectory. The black dashed lines indicate points where

the closest pair changes, demonstrating the non-smooth and abruptly vary-

ing nature of the collision distance. 5

2.1 Illustration of the collision distance calculation process. The steps are:

(1) Determine the position and orientation of each element. (2) Com-

pute the minimum distances between all element pairs. (3) Estimate the

collision distance as the minimum of these computed values. 18

3.1 The configuration space for a 2R planar robot [1]: The robot with workspace

obstacles (left), and corresponding collision regions in the configuration

space (right). 24

3.2 An illustration of the link SE(3) configuration space representation map-

ping g. The joint configuration q is mapped to the collection of link

frames Ti(q), and transformed to an input vector g(q) 33

xi

3.3 An illustration of the active learning-based training procedure. The pro-

cess starts with (1) an initial dataset and proceeds to (2) train the model

using this data. Once trained, (3) the model generates new data points

near the trained collision boundary. (4) The true collision distances of

these new data points are determined using the ground-truth collision

distance function. (5) The current dataset is then updated with the newly

sampled data points. By repeating this loop of training (2) and dataset

updating (5), the model’s performance in estimating collision distances

is progressively refined, allowing for greater accuracy in the proximity

of the collision boundary. 35

3.4 (a) A 2R planar robot system and its joint configuration space. The grey

region indicates the collision area, while the remaining space represents

the non-collision area. (b) The initial dataset D0 and the collision bound-

ary (black line) of the model trained using the initial dataset. (c) The tar-

get distribution h
(1)
θ (q) for boundary data sampling. (d) and (e) depict

the updated dataset and the collision boundary of the trained model af-

ter 20 and 50 iterations of the active learning loop, respectively. (g) The

ratio of near-boundary data points, which are the data points in the area

shown in (f), in the dataset increases with each iteration of the active

learning loop. 36

3.5 An illustration of the target multi-arm systems. (a) Two 7-dof Franka-

Emika Panda robot arms resulting in a 14-dof system. (b) Three 7-dof

robot arms resulting in a 21-dof system. 43

xii

3.6 An illustration of the real robot experiment. (a) A 7-dof single arm robot

system with obstacles and (b) the corresponding simulation environment.

(c) The plot demonstrates the collision labels and estimated collision dis-

tances of the proposed model (SE3NN with the active training procedure) 50

4.1 An illustration of the global collision distance estimation through Pair-

wiseNet. (a) Robot environment at a given joint configuration. (b) Pair-

wise collision distances for all element pairs are determined through Pair-

wiseNet. (c) The smallest of these distances becomes the global collision

distance. 55

4.2 An illustration of estimating the global collision distance via PairwiseNet. 60

4.3 An illustration of the architecture of PairwiseNet. 62

4.4 An illustration of multi-arm robot systems for generating the training

dataset. Training data points are generated from dual-arm robot environ-

ments with various relative positions between two arms. 64

4.5 Test environments for the collision distance learning performance evalu-

ation. We selected (a) two arms, (b) three arms, and (c) four arms robot

systems. 65

4.6 Detection Error Trade-off (DET) curves for collision detection methods.

Curves closer to the origin indicate better performance, with PairwiseNet

(purple solid line) achieving superior detection accuracy across all test

environments. 70

4.7 Illustrations of the top views of various base positions within multi-arm

robot systems. 71

4.8 (a) Simulation and (b) real-world environments for a single-arm system

with obstacles. 73

xiii

4.9 Collision distance estimation results for a single-arm system with ob-

stacles. The top images display a human-guided robot arm, while the

corresponding plots at the bottom illustrate the ground truth and esti-

mated collision distances from PairwiseNet and other baselines at time

t = (a) 22.9s, (b) 39.6s, (c) 53.7s, and (d) 61.6s, respectively. 74

5.1 Optimized trajectories for the 28-dof four-arm robot system: three solu-

tions demonstrating collision-free paths in a complex environment. . . . 83

5.2 Collision distance plots for optimized trajectories: ground truth, Pair-

wiseNet, and baseline methods. 84

5.3 Illustration of a collision repulsion example for a simple toy case. (a)

A 2-dof planar robot (blue) and obstacles (red). (b) Joint configuration

space with collision distance contour plot. Colors denote the collision

distance, increasing from blue (low) to red (high). Black lines indicate

collision boundaries where d̂col = 0, and black arrows indicate the deriva-

tive ∇d̂col(q). (c) The red dot denotes the current joint pose, which is

near the upper right obstacle. The direction of the collision distance

derivative ∇d̂col(q) at this joint pose is the direction of increasing col-

lision distance, which moves the robot away from the obstacle. 86

5.4 Real-time collision avoidance demonstration. (a) Robot arm maintaining

safe distance from a table despite external forces. (b) Arm navigating

within a complex shelf structure, demonstrating stable collision avoid-

ance in confined spaces. 88

A.1 Performance evaluation of model training with different replacement ra-

tios over active learning iterations, showing Accuracy, AUROC, near-

Accuracy, and near-AUROC metrics. 97

xiv

A.2 Performance evaluation of model training with different exploration ra-

tios over active learning iterations, showing Accuracy, AUROC, near-

Accuracy, and near-AUROC metrics. 99

B.1 Three geometric representations of Panda robot links. 105

B.2 Illustration of capsule geometry with optimized parameters. The capsule

is defined by two end points (ai and bi) and a radius (ri). 106

B.3 A two-arm robot system with four household objects 110

B.4 Test environments for evaluating shape generalization capability: (a) Train-

ing environment with three boxes of size 10cm, 20cm, and 30cm along-

side a Panda arm, and (b) Test environment with two unseen boxes of

size 15cm and 25cm. 115

xv

xvi

1
Introduction

1.1 Collision Distance Estimation for Path Planning

In the domain of robotics research and applications, accurately estimating the proxim-

ity between a robot and its surrounding obstacles plays a crucial role in path plan-

ning and obstacle avoidance. This concept, known as collision distance, is defined as

the minimum distance between a robot and any obstacles in its environment (including

potential self-collisions). This distance is essential in various aspects of robot motion

planning, from sampling-based methods like Rapidly-exploring Random Trees (RRT)

and its variants [2, 3, 4] to potential field methods [5, 6, 7, 8, 9] and graph search

algorithms [10, 11, 12, 13].

Traditionally, these calculations rely on geometric algorithms operating on CAD

models of the robot and its environment. While these methods have been effective for

many robotic applications, recent advancements in learning-based robot path planning

algorithms [14, 15, 16, 17] and sampling-based planning techniques [18, 19, 20, 21, 22,

23] have introduced new challenges that highlight the limitations of classical collision

1

2 Introduction

distance calculation methods. These limitations become apparent in three key areas:

• Computational speed: Modern approaches like reinforcement learning and learn-

ing from demonstration often require rapid evaluation of numerous configurations,

pushing the limits of traditional calculation methods.

• Lack of batch calculation capability: Advanced sampling-based techniques such

as model predictive path integral control schemes benefit from simultaneous eval-

uation of multiple configurations, which is inefficient with sequential processing

methods.

• Difficulty in computing derivatives: Many contemporary motion planning and con-

trol algorithms, particularly those based on optimization, require efficient access

to collision distance derivatives, which is often computationally expensive or in-

feasible with classical methods.

These limitations make classical collision distance calculation methods less suitable for

cutting-edge applications that require processing large numbers of configurations. As

robotics research continues to push the boundaries with more sophisticated planning

and control algorithms, there is a growing need for more efficient and versatile collision

distance estimation techniques.

1.2 Learning-based Collision Distance Estimation

To address the limitations of classical methods, researchers have turned to machine

learning approaches for collision distance estimation. Most methods have attempted to

learn models that predict the collision distance (or the collision label) from robot config-

urations. By collecting sufficient data consisting of robot configurations and their cor-

responding collision distances, various machine learning models have been employed

1.2. Learning-based Collision Distance Estimation 3

to learn the collision distance function (2.2.4). These include kernel perceptron mod-

els [24, 25, 26], support vector machines [27, 28], Gaussian processes [29], and neural

networks [8, 18, 28, 30, 31, 32].

While these data-driven approaches have shown promise in addressing some of the

limitations of classical methods, they face three significant challenges. Two of these

challenges are particularly pronounced when applied to complex, high-dof robot sys-

tems: difficulties in dataset construction and the inherent complexity of the collision

distance function. The third challenge, which is not specific to high-dof systems but is

nonetheless significant, is the lack of adaptability to minor environmental changes. Even

slight changes in the robot base pose or obstacle positions often necessitate retraining of

the entire model. These challenges will be elaborated upon in the subsequent sections.

1.2.1 Dataset Construction

Existing learning-based collision distance estimation methods typically generate datasets

comprising various joint configurations paired with corresponding collision distances [28,

31, 32] or boolean collision labels [8, 24, 25, 26, 27]. These approaches often utilize

datasets of less than a million samples, drawn from a uniform distribution in the joint

configuration space. While effective in their specific contexts, most of these methods

are limited to simple, low-dof robot systems.

In general machine learning problems, it is desirable for the training dataset to ad-

equately cover the target space – the input data space where accurate prediction of the

target value is crucial. In the context of collision distance learning, the target value is

the collision distance, and the target space is the joint configuration space, necessitat-

ing comprehensive coverage by the training dataset. Moreover, the required density of

the training data points in the joint configuration space typically increases when the

4 Introduction

collision distance function is complex and exhibits rapid variations.

However, a significant challenge arises as the dof of the system increases: the data

requirement to sufficiently cover the joint configuration space grows exponentially. Con-

sider, for instance, a system comprising two 7-dof robot arms. Discretizing this 14-dof

joint configuration space at 10-degree intervals (which is still too wide for practical ap-

plications) and assuming a 200-degree range for each joint would result in over 100

billion joint configurations (∼ 2014) – an unfeasible number to sample and process.

Consequently, for complex, high-dof robot systems, it becomes impractical to gen-

erate a training dataset that adequately covers the joint configuration space; a uniformly

sampled dataset of one million samples for a 14-dof robot system would provide only

about 14
√
106 ≈ 2.68 samples per joint, which is insufficient for accurate learning. This

data sparsity is a key factor contributing to the difficulty of learning collision distance

functions for high-dof robot systems. Despite this challenge, many existing methods fail

to address the insufficiency of datasets and continue to generate samples from a uniform

distribution in the joint configuration space. This approach overlooks the fundamental

issue of data sparsity in high-dimensional spaces and limits the effectiveness of these

methods for high-dof robot systems.

1.2.2 Inherent Complexity of the Collision Distance Function

The collision distance function is defined as the minimum of all pairwise distances be-

tween elements in the system. This definition inherently results in a complex and non-

smooth function. Figure 1.1 illustrates this complexity by showing the collision distance

plot of a four-arm robot system as it follows a smooth joint trajectory.

As the robot arms move along a trajectory, the closest pair of elements continuously

1.2. Learning-based Collision Distance Estimation 5

(a)

(b)

Figure 1.1: Illustration of the complex nature of collision distance function. (a) A four-

arm robot system. (b) Collision distance plot as the system follows a smooth joint tra-

jectory. The black dashed lines indicate points where the closest pair changes, demon-

strating the non-smooth and abruptly varying nature of the collision distance.

6 Introduction

changes, leading to non-smoothness and abrupt variations in the collision distance func-

tion even when the robots follow a smooth path. In Figure 1.1(b), the plot is divided by

black dashed lines, with each section corresponding to the minimum distance of a spe-

cific element pair. These divisions indicate the points at which the closest pair changes.

This intrinsic non-smooth nature of the collision distance function poses a signifi-

cant challenge for learning approaches. Simple learnable models, which are inherently

smooth functions, struggle to accurately capture these abrupt changes and discontinuities

in the collision distance landscape. Consequently, more sophisticated modeling tech-

niques are required to effectively represent and predict collision distances in complex

robot systems.

Existing methods for learning collision distance functions often rely on simplistic

input representations and models. These approaches typically use basic input represen-

tations such as raw joint configurations [8, 28, 29, 30, 31], concatenated vectors of

Cartesian coordinates for joint positions [26, 27, 30], or positional embedding vectors

of joint configurations [18].

Moreover, the models employed in these methods fall into two main categories. The

first category includes kernel-based models such as kernel perceptrons [24, 25, 26], sup-

port vector machines [27, 28], and Gaussian processes [29]. While these models can

be effective for certain applications, they often struggle to scale efficiently when deal-

ing with the large datasets required for learning collision distance functions in high-dof

robot systems.

The second category comprises neural network-based approaches [8, 18, 28, 30, 31].

However, these methods frequently employ simple, fully-connected architectures. Such

architectures, being inherently smooth functions, may be ill-suited for capturing the

complex, non-smooth nature of collision distance functions. An exception is the work

of [32], which utilizes an advanced graph neural network structure that represents the

1.2. Learning-based Collision Distance Estimation 7

geometric shapes of robots and environments as graphs. Nevertheless, this approach’s

efficiency is still limited to low-dof robot systems, and its inference speed is not only

sensitive to the complexity of the graph but also significantly slower compared to meth-

ods utilizing simple fully-connected neural network structures.

This reliance on simplistic representations and models presents a significant limita-

tion in accurately learning and representing collision distance functions, particularly for

complex, high-dof robotic systems.

1.2.3 Generalizability to Minor Environmental Changes

A significant limitation of existing learning-based methods is their sensitivity to minor

environmental changes. Slight modifications, such as adjustments to the robot’s base

position or obstacle locations, can result in a substantially different collision distance

function. Consequently, many of these methods require a complete retraining process,

consisting of both data collection and model training, to adapt to these changes. This

lack of flexibility poses a significant challenge for deploying these systems in real-world

environments.

While some approaches, like that proposed by [26], offer strategies for efficient

model updates in dynamic environments, they are often limited in scope, typically apply-

ing only to low-dof robot systems and still necessitating additional training procedures.

The model proposed by [32] demonstrates generalizability to environments with random

obstacles by employing graph representations of the environment as inputs, but its ap-

plicability is constrained to toy examples involving low-dof, 2D planar robot systems.

This challenge underscores the need for more adaptable and robust collision distance

estimation methods that can readily accommodate environmental variations without ex-

tensive retraining.

8 Introduction

1.3 Contribution

This thesis addresses the aforementioned challenges in learning-based collision distance

estimation for complex robot systems. Our work makes several key contributions to the

field, advancing the state-of-the-art in both the methodology and practical application

of collision distance estimation. We propose novel approaches that significantly improve

the accuracy, efficiency, and adaptability of collision distance estimation, particularly for

complex, high-dof robot systems. The following subsections detail our main contribu-

tions, each addressing a critical aspect of the collision distance estimation problem.

1.3.1 Active Learning of the Collision Distance Function

To address the challenges of dataset construction for high-dof robot systems, we pro-

pose a novel active learning strategy [33]. Our approach is based on a key insight:

given limited computational resources, particularly in terms of dataset size, the distribu-

tion of data points should be concentrated in the most informative regions of the joint

configuration space. In the context of collision distance learning, these critical regions

are found near the collision boundaries – areas where the collision distance is zero. By

focusing on these boundaries, our strategy efficiently utilizes the limited data to capture

the most relevant information for accurate collision distance estimation.

Our active learning-based training procedure iteratively refines the collision distance

estimation model. Beginning with an initial dataset, the process involves repeated cy-

cles of model training, generating new data points (joint configurations) near the esti-

mated collision boundaries, calculating collision distances of these points, and updating

the dataset with these newly sampled informative points. This iterative approach pro-

gressively enhances the model’s accuracy, particularly near collision boundaries. Conse-

quently, it proves highly effective for complex, high-dof robot systems where sampling

1.3. Contribution 9

near the true collision boundaries is often impractical.

Extensive experiments conducted on high-dof robot systems demonstrate that our ac-

tive learning-based training procedure enhances the performance of baseline models. The

improvements are particularly notable in the critical regions near collision boundaries,

where accurate distance estimation is crucial for safe and efficient motion planning.

These results underscore the effectiveness of our strategy in addressing the challenges

of collision distance estimation in complex, high-dof robot systems.

1.3.2 PairwiseNet: Pairwise Collision Distance Learning

Existing methods often employ simplistic input representations and model structures,

which struggle to capture the complex collision distance function of high-dof robot sys-

tems. To address this limitation, we initially explored a link SE(3) configuration space

representation [33], a more informative input representation compared to raw joint con-

figurations or concatenated vectors of joint positions.

The pose T ∈ SE(3) of each link is described by a 3 × 3 rotation matrix R and

a translation vector q ∈ R3, totaling 12 elements. The proposed representation concate-

nates these 12 elements for all links. By incorporating additional rotational information

of links, this approach demonstrates significant performance improvements over base-

lines using simpler input representations.

While our link SE(3) configuration space representation enhances learning perfor-

mance, the model architecture remains relatively simple and still faces challenges in

learning the complex, abruptly varying collision distance function. This limitation un-

derscores the need for a more comprehensive approach beyond merely modifying in-

put representations. To address this, we propose a novel approach: instead of directly

learning the collision distance for the entire robot system – which we term the global

10 Introduction

collision distance to distinguish it from pairwise distances – we focus on learning the

pairwise collision distances between specific elements. The global collision distance is

inherently non-smooth as it is defined as the minimum of these pairwise collision dis-

tances. By shifting our focus to the pairwise distances, we effectively circumvent the

difficulties associated with learning the complex, non-smooth global collision distance

function.

Building upon our insights into pairwise collision distance learning, we introduce

PairwiseNet [34], a novel method for estimating collision distances in complex robot

systems. Unlike conventional approaches that directly estimate the global collision dis-

tance, PairwiseNet focuses on predicting the minimum distance between pairs of ele-

ments within the robot system.

PairwiseNet is designed to input point cloud data of two geometric shapes along

with their relative transformation, outputting the minimum distance between these shapes.

To compute the global collision distance, PairwiseNet first estimates the pairwise dis-

tances for all possible element pairs in the system, then selects the minimum value

among these estimates. This approach leverages the efficient parallel batch computation

capabilities of neural networks, enabling rapid distance predictions for multiple element

pairs simultaneously.

A key advantage of PairwiseNet lies in its ability to simplify the learning task. The

pairwise collision distance function is inherently less complex and more manageable

to learn compared to the complex, non-smooth global collision distance function. By

decomposing the challenging global problem into more tractable sub-problems of pair-

wise distance learning, PairwiseNet achieves significant performance improvements, es-

pecially for high-dof robot systems.

Moreover, PairwiseNet exhibits remarkable generalizability to minor environmental

changes, such as changes in the position of robot bases and obstacles. While the global

1.4. Organization 11

collision distance function changes significantly even with minor environmental modi-

fications, necessitating most existing methods to retrain their models for every change,

PairwiseNet offers a more adaptable solution. Once trained on a dataset of pairwise

distances for a set of shape elements, PairwiseNet can be applied to any system com-

posed of these trained elements without requiring additional training or modifications.

This flexibility allows PairwiseNet to adapt to various robot configurations, including

systems with multiple arms or changed base positions, as long as the constituent shape

elements remain consistent with those used during training.

We have evaluated PairwiseNet across a range of scenarios, including high-dof multi-

arm systems (from 14-dof two-arm to 28-dof four-arm configurations) and single-arm

robots navigating obstacle-rich environments. Our results demonstrate PairwiseNet’s su-

perior performance over existing learning-based methods in terms of collision distance

regression error, collision checking accuracy, and notably, the False Positive Rate with

a collision-free guaranteed threshold (Safe-FPR). Importantly, PairwiseNet maintains its

high performance even when a single trained model is applied across diverse multi-arm

systems, underscoring its versatility and robustness.

1.4 Organization

Chapter 2 provides a comprehensive background on collision distance, laying the foun-

dation for the subsequent chapters. It introduces the concept of collision distance and its

critical importance in robotics, particularly in path planning and obstacle avoidance. The

chapter delves into classical methods for collision distance calculation, discussing their

principles and limitations. We also discuss how the advent of learning-based planning

approaches has introduced new demands in collision distance estimation. Specifically,

we highlight the growing importance of rapid calculation, batch processing capabilities,

12 Introduction

and efficient derivative computation in modern robotics applications. These emerging

requirements, which are often difficult to meet with classical methods, set the stage for

the need for more advanced techniques in collision distance estimation.

Chapter 3 presents our novel active learning approach for collision distance func-

tion learning, based on [33]. This chapter introduces the concept of active learning in

the context of collision distance estimation and explains how it addresses the data effi-

ciency challenges in high-dof systems. We detail our methodology for efficiently sam-

pling informative configurations in high-dimensional joint spaces, with a particular fo-

cus on regions near collision boundaries. We also present our link SE(3) configuration

space representation, demonstrating its effectiveness in improving learning performance

for high-dof robot systems. The chapter includes thorough experimental results that val-

idate the superiority of our approach over existing methods.

Chapter 4 introduces PairwiseNet, our innovative method for pairwise collision dis-

tance learning, based on [34]. We provide a detailed explanation of PairwiseNet’s archi-

tecture and training process, highlighting how it simplifies the complex task of global

collision distance estimation by focusing on pairwise distances. We discuss the remark-

able generalizability of PairwiseNet to various robot configurations and present compre-

hensive performance analyses in different scenarios, including multi-arm systems and

environments with obstacles.

Chapter 5 explores the practical applications of our collision distance estimation

methods in robot path planning. We demonstrate how our approaches can be integrated

into various planning algorithms, including offline trajectory optimization and real-time

collision avoidance. This chapter showcases the effectiveness of our methods in real-

world planning scenarios, particularly emphasizing their performance in complex, high-

dof robotic systems.

1.4. Organization 13

Throughout these chapters, we provide extensive experimental results and compara-

tive analyses. These evaluations rigorously validate our approaches and demonstrate their

superiority over existing methods in collision distance estimation for complex, high-DOF

robot systems.

14 Introduction

2
Preliminaries: Collision Distance

2.1 Introduction

In the field of robotics, particularly in path planning and collision avoidance, collision

distance is a crucial concept. This chapter explores the details of collision distance, its

importance in various robot applications, and the methods used to compute it.

We start by defining collision distance as the minimum distance between a robot

and any obstacles in its environment. This fundamental measure is essential in many

aspects of robot motion planning, from sampling-based and graph-based path planners to

reactive collision avoidance strategies and trajectory optimization methods. The frequent

use of collision distance calculations in these applications highlights its importance as

a key element of safe and efficient robot planning.

The chapter first outlines a general approach for calculating collision distance in

robot systems. We present a three-step process that involves finding the position and

orientation of system elements, computing minimum distances between element pairs,

and identifying the overall minimum distance. We express this process mathematically,

15

16 Preliminaries: Collision Distance

providing a clear understanding of how collision distance is derived from the system’s

generalized coordinates. An important insight explored in this chapter is the relationship

between the system’s generalized coordinates and the resulting collision distance. This

relationship forms the basis for learning-based approaches to collision distance estima-

tion.

After this foundational discussion, we examine classical methods for collision dis-

tance calculation. These include well-known algorithms like Gilbert-Johnson-Keerthi (GJK),

the Expanding Polytope Algorithm (EPA), and various Bounding Volume (BV) tech-

niques. We discuss their principles and uses, as well as their key limitations, particularly

their lack of batch processing capability and the challenges they present in calculating

derivatives of collision distances.

By providing this comprehensive overview, we aim to establish a clear understanding

of both the importance of collision distance in robotics and the challenges involved in

its efficient computation. This foundation will be crucial as we explore more advanced

and novel approaches to collision distance estimation in later sections.

2.2 Collision Distance

Collision distance is the minimum distance between a robot and any obstacles in its

environment, including potential self-collisions where the robot’s own parts are con-

sidered as obstacles. This calculation is crucial in various aspects of path planning.

For instance, sampling-based path planners [2, 3] require collision distance calcula-

tions for numerous random configurations, while graph-based path planners [12, 13]

need these calculations for every node. Furthermore, certain reactive collision avoid-

ance strategies [5, 6, 7, 8, 9, 27, 28] and trajectory optimization methods [26] not only

rely on collision distance but also require its derivative. Given its widespread use and

2.2. Collision Distance 17

critical role in ensuring safe robot movement, the calculation of collision distance stands

as one of the most fundamental processes in robot path planning.

To calculate the collision distance in robot systems, we assume access to a sim-

ulation environment of the target system. This environment includes the robot’s kine-

matic parameters, obstacle positions, and the geometric shapes of both robot links and

obstacles. In this context, we define an element as an individual rigid body in the sys-

tem, such as a single link of a robot arm or a discrete obstacle. To ensure computa-

tional efficiency and maintain convexity, complex shapes are often decomposed into sets

of simpler elements. The collision distance calculation for the target system follows a

three-step process:

1. Determine the position and orientation of each element in the system.

2. Compute the minimum distance between all pairs of elements in the system.

3. Identify the smallest value among these computed minimum distances.

The mathematical representation of this calculation procedure is as follows:

1. {Ti}Mi=1 = ForwardKinematics(q) (2.2.1)

2. dij = Distance(Mi,Mj , Ti, Tj), ∀i, j ∈ {1, . . . ,M}, i < j (2.2.2)

3. dcol = min
(i,j)
{dij} (2.2.3)

Here:

• q ∈ Rn represents the generalized coordinate of the system where n denotes

degree-of-freedom (dof).

• Ti ∈ SE(3) represents the position and orientation of the i-th element

• M denotes the total number of elements

18 Preliminaries: Collision Distance

(1)

(2) (3)

Figure 2.1: Illustration of the collision distance calculation process. The steps are: (1)

Determine the position and orientation of each element. (2) Compute the minimum dis-

tances between all element pairs. (3) Estimate the collision distance as the minimum of

these computed values.

2.3. Classical Collision Distance Calculation 19

• dij is the minimum distance between the i-th and j-th elements

• Mi represents the geometric shape data (e.g., mesh data) of the i-th element

• dcol is the resulting collision distance

• ForwardKinematics is a function that computes {Ti} from q, incorporating

forward kinematics of the robot

• Distance is a function that calculates the minimum distance between two ge-

ometric shapes

It’s important to note that the position and orientation of each element are functions of

q alone. Consequently, if the geometric shapes remain constant, the minimum distance

between each pair of elements is also solely a function of q. Therefore, the collision

distance of the system can be expressed as a function of the generalized coordinate q:

dcol(q) = min
(i,j)
{dij(q)}. (2.2.4)

Thus, the collision distance of the system depends exclusively on the generalized co-

ordinate q, making it feasible to learn a function that takes the generalized coordinate

q as input and outputs the collision distance. In this thesis, we focus on environments

where the dof are solely in the robot arms, so the generalized coordinate q directly

corresponds to the joint configuration of the robot arm.

2.3 Classical Collision Distance Calculation

Classical methods for collision distance calculation have been widely used in robotics

and computer graphics. Most of these methods rely on directly calculating the mini-

mum distance from geometric shape information, such as triangular meshes or shape

primitives.

20 Preliminaries: Collision Distance

The Gilbert-Johnson-Keerthi (GJK) algorithm [35] and the Expanding Polytope Al-

gorithm (EPA) [36] are widely used techniques for estimating the minimum distance

and penetration depth between convex shapes. These algorithms work by iteratively

constructing a polytope that encloses the origin and is closest to both objects, contin-

uing until the closest points between the polytope and the shapes converge. However,

these methods are computationally expensive, particularly for complex, high-dof sys-

tems which contain numerous geometric shapes. Furthermore, they are not well-suited

for batch calculations of collision distances and their derivatives.

Bounding Volume (BV) algorithms are another commonly used approach for colli-

sion distance estimation. These methods calculate the minimum distance between bound-

ing volumes composed of simpler shape primitives, such as boxes [37], spheres [27],

and capsules [8, 38]. By using these simpler shapes instead of complex geometric forms,

BV algorithms simplify the calculation of minimum distances. However, these methods

often struggle to find a balance between the computational efficiency and avoiding over-

simplification of geometric shapes. Moreover, for complex, high-dof robot systems with

numerous elements, calculating collision distances and their derivatives often remains

challenging, even with these simplified approaches.

The Flexible Collision Library (FCL) [39] offers a comprehensive toolkit for col-

lision distance calculation by unifying various algorithms such as GJK, EPA, BV, and

other related methods. This versatile set of tools enables researchers and developers to

address collision-related problems across diverse scenarios and geometric complexities.

However, FCL lacks support for derivative calculations and does not provide GPU paral-

lelization capabilities. These shortcomings restrict its applicability in scenarios requiring

gradient-based optimization or efficient batch processing of collision distances.

The aforementioned classical methods, despite their widespread use, face significant

challenges in addressing the demands of modern robotics applications. To summarize,

2.3. Classical Collision Distance Calculation 21

the key limitations include:

• Lack of batch calculation capability: These methods typically process one config-

uration at a time, making it inefficient to compute collision distances for multiple

robot configurations simultaneously. This limitation is particularly problematic in

applications that require evaluating numerous configurations, such as sampling-

based path planning.

• Challenges with derivative calculation: Computing the derivative of the collision

distance with respect to the robot’s configuration is either impossible or computa-

tionally expensive with these classical methods. This limitation is crucial because

many advanced motion planning and control algorithms, including gradient-based

trajectory optimization and some reactive collision avoidance strategies, require

efficient access to these derivatives.

These limitations make classical methods less suitable for applications that require pro-

cessing large numbers of configurations and derivative calculations, especially in com-

plex, high-dof robot systems.

22 Preliminaries: Collision Distance

3
Active learning of the Collision

Distance Function

3.1 Introduction

For typical industrial robots operating in simple, static structured environments, motion

planning has now almost been reduced to a black box technology. Sampling-based meth-

ods like RRT and its many variants [2, 3, 4] potential field methods [5, 6, 7, 8, 9] and

related hybrid approaches involving graph search and optimization [10, 11] are well-

established and widely used in many application settings.

At a minimum, these methods require a function that, given a robot’s pose and in-

formation about obstacles in the environment, can determine whether the robot pose is

collision-free or not. To do so, CAD models of the robot, obstacles, and the environ-

ment together with a simulation environment are usually assumed available. Typically

the links and obstacles are approximated by boxes [37], spheres [27], capsules [38] and

23

24 Active learning of the Collision Distance Function

Chapter 10. Motion Planning 359

✓1

✓1

✓2

✓2

A

A

A

A

B

B

C

C

start

start

endend
2⇡

2⇡
0

0

4

10

7

4

7

10

Figure 10.2: (Left) The joint angles of a 2R robot arm. (Middle) The arm navigating
among obstacles A, B, and C. (Right) The same motion in C-space. Three intermediate
points, 4, 7, and 10, along the path are labeled.

the surface of the doughnut twice, at ✓1 = 0 and ✓2 = 0, and laying it flat on
the plane.

The C-space on the right in Figure 10.2 shows the workspace obstacles A, B,
and C represented as C-obstacles. Any configuration lying inside a C-obstacle
corresponds to penetration of the obstacle by the robot arm in the workspace. A
free path for the robot arm from one configuration to another is shown in both
the workspace and C-space. The path and obstacles illustrate the topology of the
C-space. Note that the obstacles break Cfree into three connected components.

10.2.1.2 A Circular Planar Mobile Robot

Figure 10.3 shows a top view of a circular mobile robot whose configuration is
given by the location of its center, (x, y) 2 R2. The robot translates (moves with-
out rotating) in a plane with a single obstacle. The corresponding C-obstacle
is obtained by “growing” (enlarging) the workspace obstacle by the radius of
the mobile robot. Any point outside this C-obstacle represents a free config-
uration of the robot. Figure 10.4 shows the workspace and C-space for two
obstacles, indicating that in this case the mobile robot cannot pass between the
two obstacles.

10.2.1.3 A Polygonal Planar Mobile Robot That Translates

Figure 10.5 shows the C-obstacle for a polygonal mobile robot translating in
the presence of a polygonal obstacle. The C-obstacle is obtained by sliding the

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

Figure 3.1: The configuration space for a 2R planar robot [1]: The robot with workspace

obstacles (left), and corresponding collision regions in the configuration space (right).

other simple convex shapes [40] that simplify collision calculations, and standard com-

putational geometric algorithms for collision checking are employed. For typical low-dof

robots operating in static structured environments, these methods work well enough.

For more complex robots, however, e.g., those with higher degrees of freedom, or

robots with more complex topologies like parallel robots or multiple arms manipulating

a common object, even the most basic form of the motion planning problem – find-

ing a collision-free path – can pose a formidable challenge. Usually, more information

beyond a simple collision checking function is needed in order to make the problem

computationally tractable, i.e., the distance between the robot and the nearest obstacle

(including distances between robot link pairs, to avoid self-collisions) together with its

derivative may be needed.

Evaluating the collision distance is a highly computation-intensive task that involves

3.1. Introduction 25

finding the minimum distance between an obstacle and each of a robot’s links, with dis-

tances computed in either the joint configuration space or the task space. Even for a

simple planar two-link robot, the collision-free configuration space can become very

complicated as shown in Figure 3.1; for robots with multi-arm or closed chain topolo-

gies, computing pairwise distances between the links and obstacles quickly becomes

computationally intractable, especially as the robot degrees of freedom and the number

of obstacles increases.

Motivated in part by the remarkable success of machine learning methods in robot

grasping, researchers have attempted to leverage similar machine learning methods to

learn the collision distance function. Given sufficient data in the form of robot con-

figurations that are in-collision and collision-free, distance functions have been learned

using a variety of machine learning models, e.g., support vector machine (SVM) models

[27, 28], kernel perceptron models [26], and neural network (NN) models [8, 28, 30,

18, 31, 32]. Once the correct distance function is learned, whether or not a configuration

is collision-free can now be inferred in real-time.

The main drawback with existing methods, and a significant one, is the explosion

in data requirements as the degrees of freedom and number of obstacles increase. To

illustrate the case of two seven-dof arms operating in a shared workspace, discretizing

the joint configuration space for the combined 14-dof robot system at 10-degree inter-

vals (which is clearly insufficient in realistic settings), and assuming a 200-degree joint

range for each joint, this coarse sampling would result in more than 100 billion robot

configurations (∼ 2014).

A somewhat obvious observation is that uniform sampling of the configuration space

is inefficient and in most cases unnecessary; it is much better to sample as many points

as possible near the collision space boundary. The collision space boundary is of course

26 Active learning of the Collision Distance Function

not known a priori, but the boundary must necessarily lie in those parts of the con-

figuration space in which the in-collision configurations are adjacent to collision-free

configurations.

Based on this observation, an active learning strategy based on sampling points near

the boundary is proposed in [26]. Key to their approach is a kernel perceptron model

for estimating collision distances: by using an active learning-based update strategy,

the model can quickly adapt to dynamic changes in the environment. Results for low-

dof systems in simple structured environments show reasonably good performance. For

higher-dof robots, however, the performance of the kernel perceptron model is consider-

ably diminished. The underlying reason is that the computational complexity of training

a kernel perceptron model is O(N2), where N denotes the number of training data.

Since the training data requirements for high-dof robot systems increase substantially,

kernel perceptron models are not well-suited for such systems from both a computa-

tional and memory requirement perspective.

In this paper, we propose an active learning strategy for high-dof multi-arm robot

systems that overcomes these limitations of existing learning-based methods. The pro-

posed active learning-based boundary data sampling strategy samples near-boundary con-

figurations, even in high-dimensional configuration spaces. A training dataset of fixed

size is updated with these sampled configurations so that the dataset eventually consists

mostly of points near the collision boundary. Another key feature of the proposed algo-

rithm, and one that at first sight may seem somewhat paradoxical, is that by calculating

distances not in the robot’s configuration space or the task space, but in the larger space

of link SE(3) configurations – for an n-dof robot system consisting of n articulated

links, this space corresponds to n copies of SE(3) – the learned collision distance func-

tion is more accurate, and learning is also more robust and efficient. The redundancy in

representation appears to significantly enhance the ability of a neural network to learn

3.2. Related Works 27

the distance function.

In summary, our contributions are:

• We propose an active learning-based training method for high-dof robot systems.

This method ensures that the training dataset focuses more on the near-collision

boundary configurations.

• We propose a link SE(3) configuration space representation, a redundant repre-

sentation of the joint configuration that enables more accurate model training.

• Experimental evaluations involving high-dof robot systems verify that our approach

achieves significant performance improvements compared to existing state-of-the-

art methods.

In the remainder of this paper, we first discuss related works (Section 3.2) followed

by the problem formulation of collision distance learning and details of the neural net-

work model (Section 3.3). Next, we describe our novel methods (Section 3.4). To val-

idate the proposed methodology, numerical evaluations are performed for two high-dof

multi-arm robot systems (Section 3.5). We also conducted a real-world experiment us-

ing a 7-dof robot arm and obstacles to further validate the effectiveness of our approach

(Section 3.6).

3.2 Related Works

A variety of techniques based on machine learning have been proposed to estimate col-

lision distances and their derivatives. In [8], SVM classifiers are used to classify the

safe or dangerous self-collision status of a humanoid robot’s part pairs, and minimum

distances for only the dangerous pairs are estimated using a capsule bounding volume

algorithm. A similar approach is proposed in [27], in which an SVM classifier is used

28 Active learning of the Collision Distance Function

to predict collision labels for a 14-dof dual-arm robot manipulation system. A neural

network model was trained in [30] to predict the self-collision cost by inputting the

Cartesian joint positions as a concatenated vector. Similarly, the neural network model

employed in [18] utilizes the positional encoding vector of the joint configuration as

its input. In [28], neural network models are trained to predict collision labels of a hu-

manoid manipulation system. Ten sub-models are employed, each corresponding to a

separate collision classifier model trained for specific sub-part pairs, such as the left

arm and right leg. In [31], they take an extended configuration, which includes both

joint and workspace configurations, as inputs. GraphDistNet [32] utilizes a Graph Neu-

ral Network (GNN) model to estimate collision distances, in which the shape informa-

tion of the manipulator links and obstacles are represented as graphs, and the geometric

relationship between the two graphs is utilized to predict the collision distance.

Similar to the approach proposed in this paper, DiffCo [26] utilizes an active learn-

ing strategy that modifies the trained collision score function to adapt to dynamic up-

dates in the environment. DiffCo generates both the collision score and its derivative

as a collision classifier model based on the kernel perceptron. A Forward Kinematics

(FK) kernel that calculates distances as the Euclidean distance between points on the

robot body is employed. Their active learning approach generates a dataset to address

environmental changes, such as moving obstacles, by combining exploitation points and

exploration points: exploitation points are sampled from a Gaussian distribution located

near the support point of the trained kernel perceptron model, while exploration points

are sampled from a uniform distribution within the robot’s joint range limits. The effec-

tiveness of the majority of existing methods is mostly limited to low-dof robot systems

and struggles with accurately estimating collision distances for high-dof systems. A key

feature of the proposed approach is that collision distance learning performance is im-

proved through the utilization of the link SE(3) configuration space representation as

3.3. Collision Distance Learning 29

an input vector. The proposed method also samples new data points near the decision

boundaries of the trained model. As noted earlier, kernel perceptron models cannot han-

dle large datasets (i.e., those on the order of a million data points), and as such these

methods are not well-suited to high-dof systems with their larger training dataset re-

quirements.

3.3 Collision Distance Learning

3.3.1 Problem Formulation

Our objective is to train a collision distance estimator model for a given target robot

system, represented as a parameterized function fθ. Initially, we assume that we have

access to the ground-truth collision distance function dcol of the target system, which

uses all the necessary information such as the robot kinematics and the geometric shapes

of links and obstacles, to calculate the collision distances di ∈ R from joint configura-

tions qi ∈ RN , i.e., di = dcol(qi). The dcol function encompasses the forward kinematics

of the robot, 3D shape information of all objects in the system, and minimum distance

calculation between them (clearly, calculating dcol(q) is computationally expensive and

impractical for path planning tasks, but it is feasible for generating the dataset offline).

Next, we collect a dataset D = {(qi, di)i}, containing joint configurations qi and

corresponding collision distances di, computed by the ground-truth collision distance

function dcol. Finally, we optimize the parameters θ of the model fθ by minimizing the

mean-squared error (MSE) loss function L, which measures the difference between the

predicted collision distances fθ(qi) and the actual collision distances di, as shown in

30 Active learning of the Collision Distance Function

Equations (3.3.1) and (3.3.2).

θ∗ = argmin
θ

L(D, fθ) (3.3.1)

= argmin
θ

1

|D|
∑

(qi,di)∈D

||fθ(qi)− di||2 (3.3.2)

The trained collision distance estimator model fθ can be utilized for collision checking

by setting a safety threshold ϵ. If the estimated collision distance fθ(q) is less than ϵ,

then the configuration q is regarded as in-collision, while if fθ(q) is greater than ϵ, then

the configuration q is collision-free. In the next section, we describe the structure of the

proposed collision distance estimator model fθ (Section 3.3.2), the input representation

of the model (Section 3.4.1), and the active learning-based training method (Section

3.4.2).

3.3.2 Neural Network Model

When it comes to designing the form of the parametric function fθ, there are several

options to consider. Among them, neural network models are primarily preferred for fθ

in the majority of recent works, mainly because of their potential to harness big data,

enable fast inference times, and their recent success in various fields. To implement the

proposed approach, which are based on a novel input representation and training proce-

dure, we have chosen to use a simple neural network architecture with fully connected

layers. By keeping the neural network structure simple, we are able to focus on the

benefits of the proposed approach without introducing additional complexity.

A fully connected layer, also known as a dense layer, is a layer in a neural network

where each neuron is connected to every neuron in the previous and subsequent layers.

The purpose of a fully connected layer is to combine the features learned in the previous

layers and perform a linear transformation followed by a non-linear activation function

3.3. Collision Distance Learning 31

to generate the output of the layer. Mathematically, the output of a fully connected layer

can be represented as:

y = ϕ(Wx+ b) (3.3.3)

where x is the input vector of size n, representing the activations of the previous layer,

W is the weight matrix of size m×n, where m is the number of neurons in the fully

connected layer and n is the number of neurons in the previous layer, b is the bias

vector of size m, containing the biases for each neuron in the fully connected layer,

ϕ is the activation function applied element-wise, such as the Rectified Linear Unit

(ReLU) or Sigmoid function, and y is the output vector of size m, representing the

activations of the fully connected layer.

Our model consists of five fully connected layers with hidden neurons of 128, each

followed by a ReLU activation function. The model can be formally expressed as:

fθ(q) = (NNθ ◦ g)(q) (3.3.4)

NNθ(x) =W (5)h(4) + b(5) (3.3.5)

h(i) = ϕ(W (i)h(i−1) + b(i)), i = 2, 3, 4 (3.3.6)

h(1) = ϕ(W (1)x+ b(1)) (3.3.7)

where g denotes the input representation mapping, and h(i) ∈ R128 denotes the hidden

neurons of the ith layer. Thus, the learnable parameter θ includes weight matrices W (i)

and biases b(i). The input representation mapping g depends on user choice (e.g., the

joint configuration representation [8, 28] or the position vector representation of joints

[27, 30]). Our choice is detailed in Section 3.4.1.

32 Active learning of the Collision Distance Function

3.4 Methods

3.4.1 Link SE(3) Configuration Space Representation

Rather than using the joint configuration as the input representation, we use the link

SE(3) configuration space representation for each of the links for more effective learn-

ing of the collision distance function. The mapping g : RN 7→ R12N represents the

forward kinematics from the joint configuration space to the link SE(3) configuration

space for each of the N links as shown in Figure 3.2 (recall that T ∈ SE(3) con-

sists of a 3×3 rotation matrix R and a three-dimensional translation vector p, resulting

in 12 (dependent) elements). Given a joint pose q ∈ RN , we calculate the link frame

T ∈ SE(3) for each link, then arrange each R and p for all links into a single vector

g(q) ∈ R12N . In mathematical notation, the input vector g(q) is given by

g(q)12(n−1)+4(i−1)+j = T
(n)
ij (q). (3.4.8)

Here, g(q)k refers to the kth element of the input vector g(q), while T (n)
ij represents the

element located at the ith row and jth column of the nth link frame T (n). The variables

are defined such that n ranges from 1 to N , and i and j each range from 1 to 3 and

4, respectively.

Clearly, this representation is redundant (e.g., the third column of each R could be

fully determined by the first and second columns), but we use this redundant represen-

tation instead of other alternatives, e.g., three-parameter representations or quaternion

representations for the rotation matrix R. This choice is motivated by its simplicity in

implementation and its superior collision distance learning performance. The link SE(3)

configuration space representation only necessitates a flatten() operation on the link

frame T , thereby making the mapping g and its derivative ∇g simple to implement. Fur-

thermore, our ablation study reveals that the proposed redundant representation shows

3.4. Methods 33

𝑇 𝑁
𝑞

𝑇 1
𝑞

O
ri

gi
n

1
2
𝑁

Fo
rw

ar
d

 K
in

em
at

ic
s

𝑁…

Jo
in

t
p

o
se

𝑞

Fl
at

te
n

In
p

u
t

𝑔
(𝑞
)

Li
n

k
Fr

am
e

𝑇
∈
𝑆
𝐸
(3
)

4

4
𝑁

…

𝑁

…

4
3

R
o

ta
ti

o
n

 𝑅
an

d
Tr

an
sl

at
io

n
 𝑝

R
o

ta
ti

o
n

𝑅
∈
𝑆
𝑂
3

Tr
an

sl
at

io
n

𝑝
∈
ℝ
3

…

1
2
(1
)

1
2
(𝑁
)

3
×
3

3
×
1

Fi
gu

re
3.

2:
A

n
ill

us
tr

at
io

n
of

th
e

lin
k
S
E
(3
)

co
nfi

gu
ra

tio
n

sp
ac

e
re

pr
es

en
ta

tio
n

m
ap

pi
ng

g
.

T
he

jo
in

t
co

nfi
gu

ra
tio

n

q
is

m
ap

pe
d

to
th

e
co

lle
ct

io
n

of
lin

k
fr

am
es
T
i(
q)

,
an

d
tr

an
sf

or
m

ed
to

an
in

pu
t

ve
ct

or
g
(q
)

34 Active learning of the Collision Distance Function

better learning performance than other non-redundant representations (Section 3.5.4).

3.4.2 Active Learning-based Training with Boundary Data Sampling

In this section, we describe the proposed active learning-based training method. We em-

ploy an iterative procedure to enhance the model’s performance in estimating collision

distances as illustrated in Figure 3.3. Starting with an initial dataset, we use this data

to train the model, adjusting its parameters to minimize the loss function. Once trained,

we generate new data points near the trained collision boundary, a region where fθ(q)

is close to 0. We then determine the true collision distances for the newly sampled data

points using the ground-truth collision distance function, dcol. These new data points,

along with their true collision distances, are then integrated into the current dataset. This

entire process, from training the model to updating the dataset, is repeated Nactive times.

This iterative procedure enables the model to estimate collision distances more accu-

rately as it encounters new data points near the collision boundary. Our active learning-

based training procedure is detailed in Algorithm 1.

The overall process of the proposed active learning-based training method can be

easily understood through a toy experiment of a 2R planar robot system, as illustrated in

Figure 3.4. We create a robot environment consisting of a 2R planar robot and obstacles,

along with the ground-truth collision distance function dcol for this system (Figure 3.4

(a)). We begin by initializing an initial dataset containing 500 data points. The initial

dataset D0 is uniformly sampled in the joint configuration space. We then train the first

model f (1)θ using this dataset. While the first model demonstrates good collision check

accuracy for the training data points, it still shows an inaccurate collision boundary, as

shown in Figure 3.4 (b). To improve the model, we employ an active learning-based

training method that involves boundary data sampling and dataset update procedures.

3.4. Methods 35

𝒟
𝑖

𝒟
𝑖+
1

D
at

as
et

 U
p

d
at

e

In
it

ia
l D

at
as

et

𝒟
0

M
o

d
e

l T
ra

in
in

g

m
in 𝜃
𝐿

𝒟
𝑖,
𝑓 𝜃
(𝑖
)

Th
e

 C
o

l.
 D

is
ta

n
ce

Es

ti
m

at
io

n
 M

o
d

e
l

𝑑
=
𝑓 𝜃
(𝑞
)

B
o

u
n

d
ar

y
D

at
a

Sa
m

p
lin

g

𝑞
n
e
w
~
ℎ
𝜃(𝑖
+
1
)
𝑞

=
ex
p
−
𝑓 𝜃
(𝑖
+
1
)
𝑞

2

𝜎
𝑒2

②
~⑤

: A
ct

iv
e

 L
e

ar
n

in
g

Lo
o

p

N
ew

 D
at

a
P

o
in

ts

𝒟
+
=

𝑞
n
e
w
,𝑑

n
e
w

𝑘

𝑑
n
e
w
=
𝑑
c
o
l
𝑞
n
e
w

𝒟
+

𝑓 𝜃
(𝑖
+
1
)

①
②

③
④⑤

⑥

Fi
gu

re
3.

3:
A

n
ill

us
tr

at
io

n
of

th
e

ac
tiv

e
le

ar
ni

ng
-b

as
ed

tr
ai

ni
ng

pr
oc

ed
ur

e.
T

he
pr

oc
es

s
st

ar
ts

w
ith

(1
)

an
in

iti
al

da
ta

se
t

an
d

pr
oc

ee
ds

to
(2

)
tr

ai
n

th
e

m
od

el
us

in
g

th
is

da
ta

.
O

nc
e

tr
ai

ne
d,

(3
)

th
e

m
od

el
ge

ne
ra

te
s

ne
w

da
ta

po
in

ts

ne
ar

th
e

tr
ai

ne
d

co
lli

si
on

bo
un

da
ry

.
(4

)
T

he
tr

ue
co

lli
si

on
di

st
an

ce
s

of
th

es
e

ne
w

da
ta

po
in

ts
ar

e
de

te
rm

in
ed

us
in

g

th
e

gr
ou

nd
-t

ru
th

co
lli

si
on

di
st

an
ce

fu
nc

tio
n.

(5
)

T
he

cu
rr

en
t

da
ta

se
t

is
th

en
up

da
te

d
w

ith
th

e
ne

w
ly

sa
m

pl
ed

da
ta

po
in

ts
.

B
y

re
pe

at
in

g
th

is
lo

op
of

tr
ai

ni
ng

(2
)

an
d

da
ta

se
t

up
da

tin
g

(5
),

th
e

m
od

el
’s

pe
rf

or
m

an
ce

in
es

tim
at

in
g

co
lli

si
on

di
st

an
ce

s
is

pr
og

re
ss

iv
el

y
re

fin
ed

,
al

lo
w

in
g

fo
r

gr
ea

te
r

ac
cu

ra
cy

in
th

e
pr

ox
im

ity
of

th
e

co
lli

si
on

bo
un

da
ry

.

36 Active learning of the Collision Distance Function
(a)

2
R

 P
lan

ar R
o

b
o

t Syste
m

𝑞
1

−
𝜋

𝜋
−
𝜋 𝜋𝑞
2

𝑞
1

𝑞
2

Collision

N
o

n
-co

llisio
n

Jo
in

t C
o

n
figu

ratio
n

 Sp
ace

R
o

b
o

t En
viro

n
m

en
t

(b
) Th

e in
itial d

ataset 𝒟
0

an
d

train
ed

 b
o

u
n

d
ary 𝑓𝜃

1
𝑞

=
0

C
o

llisio
n

N
o

n
-co

llisio
n

(d
) Th

e d
ataset 𝒟

2
0

an
d

train
ed

 b
o

u
n

d
ary 𝑓𝜃 (2

1
)
𝑞

=
0

(e
) Th

e d
ataset 𝒟

5
0

an
d

train
ed

 b
o

u
n

d
ary 𝑓𝜃 (5

1
)
𝑞

=
0

o
f A

ctive Learn
in

g Lo
o

p

Ratio

(g) Th
e ratio

 o
f n

ear-b
o

u
n

d
ary d

ata p
o

in
ts

in
 𝒟

𝑖
(after 𝑖

th
A

ctive Learn
in

g Lo
o

p
)

0
m

ax

(c) Target D
istrib

u
tio

n
 ℎ
𝜃 (1
)
𝑞

fo
r B

o
u

n
d

ary D
ata Sam

p
lin

g

(f) N
ear-b

o
u

n
d

ary area (sh
ad

o
w

ed
)

{𝑞
∈
ℝ
2
|
𝑓
𝐺
𝑇
𝑞

<
0
.5
}

ℎ
𝜃 (1
)
𝑞

Figure
3.4:

(a)
A

2R
planar

robot
system

and
its

joint
configuration

space.
T

he
grey

region
indicates

the
colli-

sion
area,

w
hile

the
rem

aining
space

represents
the

non-collision
area.

(b)
T

he
initial

datasetD
0

and
the

collision

boundary
(black

line)
of

the
m

odel
trained

using
the

initial
dataset.

(c)
T

he
target

distribution
h
(1
)

θ
(q)

for
boundary

data
sam

pling.
(d)

and
(e)

depict
the

updated
dataset

and
the

collision
boundary

of
the

trained
m

odel
after

20
and

50
iterations

of
the

active
learning

loop,
respectively.

(g)
T

he
ratio

of
near-boundary

data
points,

w
hich

are
the

data
points

in
the

area
show

n
in

(f),
in

the
dataset

increases
w

ith
each

iteration
of

the
active

learning
loop.

3.4. Methods 37

The target distribution h
(1)
θ (q) for boundary data sampling of the first model is illus-

trated in Figure 3.4 (c), with a high sampling probability near the collision boundary

of the model f (1)θ . The updated dataset and trained model after 20 and 50 iterations of

the active learning loop are shown in Figure 3.4 (d) and (e), respectively. As the active

learning loop continues, the updated dataset increasingly includes more near-collision

data points. The plot in Figure 3.4 (g) represents the ratio of near-boundary data points

in the dataset, with the near-boundary region displayed in Figure 3.4 (f). Initially, only

23% of the data points are in the near-boundary region. However, this ratio converges to

nearly 100% as the active learning loop progresses. Once the trained collision bound-

ary closely approximates the ground-truth collision boundary and the majority of the

dataset comprises near-boundary data points, the active learning loop no longer makes

significant changes to the dataset or the model. At this stage, the data distribution of

the dataset remains unchanged, and the performance of the collision distance estimation

model converges. The active learning loop concludes, resulting in a model that accu-

rately estimates collision distances near the true collision boundary. We have set the

hyperparameter Nactive to a sufficiently large value to ensure that this active learning

loop can converge satisfactorily.

Boundary Data Sampling. We define a target distribution, hθ, an unnormalized prob-

ability distribution for sampling new data points near the collision boundary:

qnew ∼ hθ(q) = exp

[
− |fθ(q)|

2

σ2e

]
(3.4.9)

As shown in Figure 3.4 (c), hθ is highest at the boundary, decreasing with distance

from it. σe is a hyperparameter that dictates the rate of decrease in the probability

with increasing distance from the boundary. We then utilize Markov Chain Monte Carlo

38 Active learning of the Collision Distance Function

Algorithm 1 Active learning-based training method
1: Given an initial dataset D0 = {(qi, di)i}, learning rate η, updating dataset size k

2: Initialize θ → f
(0)
θ

3: for i = 0, . . . , Nactive do
4: for j = 1, . . . , Nepoch do ▷ Model Training

5: Calculate L(Di, f (i)θ)

6: Update θj+1 ← θj − η∇θL
7: end for
8: Sample qnew ← BOUNDARYSAMPLING(f

(i+1)
θ) ▷ Boundary Data Sampling

9: Label dnew ← collision distance calculation dcol(qnew)

10: D+ ← {(qnew, dnew)k} ▷ Dataset Update

11: D− ← A subset of Di, consisting of k randomly chosen elements

12: Di+1 ← D+ ∪ (Di −D−)

13: end for

Algorithm 2 Boundary data sampling (MCMC sampling)
1: function BOUNDARYSAMPLING(fθ)

2: Given a target distribution hθ(q) = exp[− |fθ(q)|2
σ2
e

]

3: Initialize q ← sample from UNIFORM(qmin, qmax)

4: pq ← hθ(q)

5: for i = 1, . . . ,max_step do
6: q+ ← q + ϵ, ϵ ∼ N(0, σ) ▷ Random walk

7: pq+ ← hθ(q
+)

8: u← sample from UNIFORM(umin, 1) ▷ Relaxed rejection

9: if
pq+

pq
> u then

10: q ← q+

11: end if
12: end for
13: return q

14: end function

3.4. Methods 39

(MCMC) [41], a powerful and widely-used method for sampling from probability dis-

tributions. It is often used when we can’t directly sample from a desired distribution,

but we can calculate some function proportional to its density (in our case, hθ). MCMC

methods build a Markov chain of samples, where the next sample is generated based

on the current one, and the chain is constructed such that its stationary distribution is

the desired distribution we want to sample from. There are many variants of MCMC,

here we use Metropolis-Hastings (MH) algorithm [42].

The Metropolis-Hastings algorithm starts with an arbitrary point from the joint con-

figuration space. A new point is proposed from an easily sampled distribution, e.g.,

Gaussian distribution. The algorithm then decides to accept this point, based on an ac-

ceptance probability computed from the ratio of the probability densities at the proposed

and current points under the target distribution hθ. If the proposed point is less likely

than the current one, it’s accepted with a probability equal to this ratio. A random num-

ber u is drawn to determine whether to accept or reject the proposed point. This process

repeats, resulting in a sequence of points converging to the target distribution hθ, which

is data points near the boundary. The boundary data sampling procedure is detailed in

Algorithm 2.

Several critical hyperparameters influence the boundary data sampling process, ne-

cessitating careful tuning. For example, σe controls the target distribution shape - smaller

values result in more focused sampling near boundaries, but overly narrow distribu-

tions can make sampling computationally challenging. Since the optimal hyperparam-

eters vary with collision boundary complexity, appropriate adjustment is required for

each environment. We tuned these hyperparameters by verifying that the distribution

of estimated collision distances fθ(q) from sampled points approximates the intended

zero-mean Gaussian distribution for both target robot systems. Detailed tuning results

are provided in Appendix A.1.

40 Active learning of the Collision Distance Function

Dataset Update. After generating the new data points D+ with a size of k, we update

the training dataset Di for the next training process. We randomly select data points D−

from the training dataset, also with a size of k, to be removed. Subsequently, we replace

D− with D+ in order to preserve the overall size of the next training dataset Di+1. This

replacement strategy is employed to prevent the continuous growth of training time in

each active learning loop. By incorporating near-boundary data points and this dataset

update strategy, the training dataset gradually focuses more on the near-boundary area,

as demonstrated in Figure 3.4. Once the majority of training data points are located in

the near-boundary area (Figure 3.4 (e)), updating the dataset with new data points does

not yield substantial changes to the distribution of the training dataset. At this stage,

we can conclude the active learning loop and proceed to obtain the final trained model.

Using larger values of k incorporates more new data points into the dataset, leading

to faster concentration of data near boundaries and potentially accelerating performance

convergence across active learning iterations. However, this increased data usage results

in higher computational costs, making it important to tune k appropriately. Our abla-

tion study in Appendix A.1 shows that while increasing k leads to modest performance

improvements and slightly faster convergence, these gains appear to be merely a result

of using more data points. This approach of improving performance simply by using

more data diverges from our paper’s focus on finding better data distributions under

limited computational resources. Therefore, we did not use higher k values in our main

experiments. Nevertheless, if the goal is to achieve better performance and more com-

putational resources are available, using higher k values remains a viable option.

3.5. Learning Performance Evaluation 41

3.5 Learning Performance Evaluation

3.5.1 Evaluation Setting

Proposed Methods and Baselines. In this section, we train and compare various mod-

els for collision distance learning. These models include the methods proposed in this

paper as well as existing collision distance learning methods used as the baseline. The

trained models are as follows:

• JointNN: A neural network model that directly takes the joint configuration as

inputs (the input representation used in [8, 28, 30]).

• PosNN: A neural network model that takes the Cartesian coordinates of the joint

positions as inputs (the input representation used in [27, 30]).

• ClearanceNet [31]: A neural network model composed of two fully-connected

layers with each followed by a dropout layer, taking the joint configuration as

inputs.

• DiffCo [26]: A kernel perceptron model with FK kernel, which inputs the joint

configuration and outputs the collision score.

• SE3NN (ours): A neural network model that takes the link SE(3) space repre-

sentation as inputs.

To compare the effectiveness of the proposed link SE(3) configuration space repre-

sentation with other input representations, we implement JointNN and PosNN with the

same network structure as our model (SE3NN) as described earlier in Section 3.3.2.

DiffCo and ClearanceNet, which are existing learning-based collision estimator mod-

els, are also used as baselines. Details on implementing DiffCo and ClearanceNet are

consistent with those specified in [26, 31].

42 Active learning of the Collision Distance Function

We employ two distinct training procedures for the neural network models: the train-

ing procedure denoted as active is the proposed active learning-based training procedure

described in Section 3.4.2, while the training procedure denoted none corresponds to the

standard training procedure using only the initial training dataset (without active learn-

ing). DiffCo also employs an active learning-based boundary data sampling strategy that

is specific to the kernel perceptron model. The active learning-based training procedure

of DiffCo models that we implement are denoted DiffCo; these are similar to our frame-

work, the key difference being that the boundary data sampling strategy is replaced with

DiffCo’s strategy.

Target Environment and Datasets. We select two high-dof multi-arm robot manipu-

lation systems as our target environment as shown in Figure 3.5. The first system fea-

tures two Franka-Emika Panda robot arms, each with 7-dof, placed 0.6 meters apart and

facing each other. The second system features three Panda robot arms arranged equidis-

tantly on a circle of radius 0.5 meters centered at the origin, each facing towards the

center.

For each target environment, we generate a collision distance dataset D = {(qi, di)i}
by randomly sampling joint configurations qi from a uniform distribution within the

joint limits, and calculating the corresponding collision distance di using mesh-based

collision distance calculation methods [35]. Using the collision distance calculation al-

gorithm implemented in PyBullet [43], a Python wrapper for the Bullet physics engine

library, we generate 1 million data points for both the training and test dataset. For train-

ing the DiffCo model, we use 75,000 data points with boolean collision labels (-1 for

collision-free and 1 for collision). This dataset size is the maximum manageable dataset

size for kernel perceptron training on our computing hardware (AMD Ryzen Thread-

ripper 3960X, 256GB RAM, and NVIDIA GeForce RTX4090 with 24GB VRAM).

3.5. Learning Performance Evaluation 43

𝑑 = 0.3m

𝑑 𝑑

(a)

𝑑

𝜃

𝜃 = 120°
𝑑 = 0.5m

(b)

Figure 3.5: An illustration of the target multi-arm systems. (a) Two 7-dof Franka-Emika

Panda robot arms resulting in a 14-dof system. (b) Three 7-dof robot arms resulting in

a 21-dof system.

When employing our active training procedure, we replace k samples with newly

generated data points at each active learning iteration, resulting in k×Nactive additional

data points throughout the training process, where Nactive denotes the number of active

learning iterations. However, the performance improvement of our model is not merely

attributed to using more data points. Rather, it is primarily due to generating new data

points near the collision boundary regions, which have a more significant impact on

model performance. While updating the dataset with uniformly sampled points within

44 Active learning of the Collision Distance Function

joint limits shows modest improvement, our active methodology demonstrates superior

performance gains by sampling near collision boundaries. Detailed experimental results

comparing these approaches are presented in the Appendix A.2.

Evaluation Metrics. In this section, we present the numerical metrics used to evalu-

ate the performance of our collision distance learning models. Since collision distance

estimation models are typically used for collision label classification, we evaluate clas-

sification performance using two metrics: accuracy with the threshold ϵ = 0.0, and Area

Under the Receiver Operating Characteristic (AUROC). AUROC is a widely used per-

formance metric for classification tasks that measures the model’s ability to distinguish

between different classes. It quantifies the overall performance of a classifier by calcu-

lating the area under the ROC curve, which represents the trade-off between the true

positive rate and the false positive rate at various classification thresholds. AUROC pro-

vides a single scalar value that summarizes the classifier’s discriminative power across

all possible thresholds, making it robust to threshold selection. Higher AUROC values

indicate better classification performance, with a perfect classifier achieving an AUROC

of 1. We also report the near-accuracy and near-AUROC metrics, which evaluate the

classification performance only on data points in the test dataset with collision distances

within the range of -0.1m to 0.1m, since accurately classifying collisions in the close-

to-collision region is critical for actual robot manipulation tasks.

3.5.2 Evaluation Results

We conduct a comparative analysis of the collision classification performance of our

methods against baseline models. Table 3.1 presents the main results, highlighting the

effectiveness of the active learning-based training framework and the link SE(3) con-

figuration space representation. The top-performing metrics for each target environment

3.5. Learning Performance Evaluation 45

are indicated in bold, all of which are achieved by the SE3NN model trained with the

active procedure.

Compared to other input representations like the joint configuration and the Carte-

sian coordinates of joint positions, the use of the link SE(3) configuration space repre-

sentation results in a significant improvement in collision classification performance in

both robot systems. Furthermore, our SE3NN model demonstrates better performance

than other baseline models, ClearanceNet and DiffCo, which both use the joint config-

uration as inputs.

The proposed active learning-based training framework also demonstrates improved

performance compared to the none training procedure. Although the improvements in

terms of accuracy and AUROC may seem modest, the near-accuracy and near-AUROC

metrics show significant improvement compared to the baseline models. This indicates

that our method enables the model to make more accurate collision classifications in the

close-to-collision region, where collision classification is critical. In contrast, the classi-

fication performance metrics of the DiffCo model are even worse in some cases when

the DiffCo training procedure is applied. This may be due to the fact that the bound-

ary data sampling strategy of DiffCo targets the update of the kernel perceptron model

for dynamic changes in the environment for low-dof systems, rather than constructing

datasets for high-dof robot systems that require over a million data points for collision

distance learning.

46 Active learning of the Collision Distance Function

Table 3.1: Collision distance estimation performance comparison: SE3NN with active

learning-based training versus baseline methods

Env. Model Training
Accuracy

(ϵ=0.0)
AUROC

near-Accuracy

(ϵ=0.0)
near-AUROC

Fig. 3.5(a)

(Two arms)

JointNN
none 0.9765 0.9942 0.8799 0.9491

active 0.9809 0.9960 0.9018 0.9643

PosNN
none 0.9810 0.9965 0.9025 0.9681

active 0.9828 0.9971 0.9117 0.9735

ClearanceNet
none 0.9627 0.9855 0.8128 0.8845

active 0.9707 0.9900 0.8516 0.9186

DiffCo
none 0.9541 0.9828 0.7786 0.8641

DiffCo 0.9328 0.9827 0.7024 0.8674

SE3NN (ours)
none 0.9862 0.9981 0.9293 0.9830

active 0.9886 0.9987 0.9416 0.9877

Fig. 3.5(b)

(Three arms)

JointNN
none 0.9691 0.9868 0.8189 0.8875

active 0.9765 0.9918 0.8609 0.9280

PosNN
none 0.9799 0.9943 0.8808 0.9485

active 0.9821 0.9955 0.8937 0.9587

ClearanceNet
none 0.9443 0.9507 0.6944 0.7202

active 0.9532 0.9619 0.7377 0.7746

DiffCo
none 0.9453 0.9589 0.7019 0.7557

DiffCo 0.9447 0.9600 0.7105 0.7642

SE3NN (ours)
none 0.9826 0.9958 0.8969 0.9619

active 0.9858 0.9971 0.9157 0.9738

3.5. Learning Performance Evaluation 47

Table 3.2: Training time, inference time, and GPU memory requirements: Comparison

of SE3NN and baseline methods

Model

Fig.3.5(a) (Two arms) Fig.3.5(b) (Three arms)
Required GPU

memory (GB)Training

time (h)

Inference

time (ms)
Training

time (h)

Inference

time (ms)

CPU GPU CPU GPU

JointNN 1.18 0.076 0.186 1.26 0.079 0.184 1.364

PosNN 16.4 0.079 0.183 23.9 0.076 0.186 1.378

ClearanceNet 34.9 0.233 0.139 44.9 0.239 0.148 1.384

DiffCo 0.13 / 2.96* 0.128 0.097 0.22 / 6.83* 0.878 0.098 23.166

SE3NN 16.9 0.082 0.181 23.8 0.079 0.189 1.378

*In case of Diffco, training time when utilizing the none / DiffCo training procedure.

3.5.3 Time and Memory

The results of measuring the training time, inference time and the required GPU mem-

ory of the models are presented in Table 3.2. The measured training times are all based

on using the proposed active training procedure. To ensure a fair performance compar-

ison, we also trained using the none training procedure for the same number of epochs

as the active training procedure (Nactive × Nepoch). Thus, there is no significant differ-

ence in the training time between the two training procedures. For Diffco, we have

provided both training times in the table as there was a difference in the training time

between the none training procedure and the DiffCo training procedure. The required

GPU memory was measured as the maximum GPU memory utilized during the model

training.

Training PosNN and SE3NN requires more time compared to JointNN because these

48 Active learning of the Collision Distance Function

two models involve calculating the robot’s forward kinematics during the training pro-

cess. For ClearanceNet, we set the batch size to the value used in [31], which is 191.

Hence, compared to other models with a batch size of 10,000, ClearanceNet requires

more gradient steps (assuming the same number of epochs), resulting in longer training

times. The training time for DiffCo is notably shorter compared to other neural network-

based models. However, it is due to the fact that we utilized only 7.5% of the training

data points for training DiffCo models. The kernel perceptron model’s training process

involves computing the distance between all training data points, which requires O(N2)

memory where N is the number of training data points. Consequently, this limitation

hinders the use of large datasets. In our DiffCo model implementation, we were able

to utilize a maximum of 75,000 data points under the 24GB graphics processing unit

memory constraint.

The inference time represents the average time taken by each model to perform

collision distance estimation 10,000 times in repetitions. Both CPU and GPU execution

scenarios were considered separately. Due to the simplicity of the neural network ar-

chitectures and the limited number of layers used, all models achieved inference times

within 1ms. This level of performance is compatible with a 1kHz control frequency,

ensuring efficient real-time operation.

3.5.4 Compared to Other Representations of SE(3)

In the proposed approach, we utilize the redundant representation of SE(3), which in-

volves the 12-dimensional flattened vector of a rotation matrix and a translation vector.

To evaluate the effectiveness of our redundant representation, we compare our approach

to other representations, namely quaternions and Euler angles. In mathematical notation,

3.6. Real-world Experiments 49

Table 3.3: Performance of other non-redundant input representations

Env. Model
Accuracy

(ϵ=0.0)
AUROC

near-Accuracy

(ϵ=0.0)
near-AUROC

Fig. 3.5(b)

(Three arms)

QuatposNN 0.9819 0.9955 0.8930 0.9586

EulerposNN 0.9818 0.9955 0.8923 0.9586

SE3NN 0.9826 0.9958 0.8969 0.9619

we introduce two distinct mappings: gquat : RN 7→ R7N representing the quaternion rep-

resentation and gEuler : RN 7→ R6N for the Euler angles representation. The input vectors

for these mappings are given by:

gquat(q)7(n−1):7n = [to_quaternion(R(n)(q)), p(n)(q)] ∈ R7, (3.5.10)

gEuler(q)6(n−1):6n = [to_Euler_angles(R(n)(q)), p(n)(q)] ∈ R6. (3.5.11)

Here, R(n) denotes the rotation matrix and p(n) the translation vector for the nth link

frame, represented by T (n). QuatposNN utilizes gquat(q), while EulerposNN employs

gEuler(q) for their input mappings.

Table 3.3 shows the comparison results. The performances of these different rep-

resentations do not show a big performance gap; however, it is noteworthy that the

proposed redundant representation exhibits slightly better performance compared to the

other representations.

3.6 Real-world Experiments

To validate the performance of our collision distance estimation, we conducted real-

world experiments using a 7-dof Panda robot arm (Figure 3.6). The workspace was

designed with complex obstacles like shelves and tables, introducing complexity to the

50 Active learning of the Collision Distance Function

(a) (b)

(c)

Figure 3.6: An illustration of the real robot experiment. (a) A 7-dof single arm robot

system with obstacles and (b) the corresponding simulation environment. (c) The plot

demonstrates the collision labels and estimated collision distances of the proposed model

(SE3NN with the active training procedure)

3.7. Conclusion 51

robot arm’s workspace. To safely generate close-to-collision trajectories, we conducted a

human-guided demonstration as illustrated in Figure 3.6 (a). During this demonstration,

the robot arm followed guided trajectories that came close to, and occasionally collided

with, various parts of the obstacles. The guided trajectory encompassed motions that

closely swept the inner space of the shelves and the top of the tables.

We employed the active training procedure to train the SE3NN model, following the

same data generation and model training process as described in Section 3.4 and 3.5. To

calculate the ground-truth collision distance of the dataset, we constructed a simulation

environment for the real-world robot system, as illustrated in Figure 3.6 (b). The colli-

sion distance estimated by the trained SE3NN model and the real-world collision labels

are plotted in Figure 3.6 (c). The plot demonstrates that the model successfully predicts

negative collision distance when the robot collides with obstacles. Throughout the entire

trajectory, we conducted collision distance estimation with a frequency of 1kHz, result-

ing in a total of 84,668 collision distance estimations. The proposed model exhibited a

collision classification accuracy of 95.9% with a threshold of ϵ = 0.0.

3.7 Conclusion

In this paper, we have presented an active learning strategy for learning the collision

distance function for high-dof multi-arm robot systems operating in complex environ-

ments. The proposed method rests on two key ideas – an active learning-based training

method with a boundary data sampling strategy that efficiently provides near-boundary

data points for the training dataset, and using the link SE(3) configurations as inputs

to the model instead of the usual joint configurations. Our methods enable the model

to accurately learn complex collision distance functions for high-dof robot systems. We

validate our approach on two high-dof multi-arm robot systems with two and three 7-dof

52 Active learning of the Collision Distance Function

robot arms, respectively. Our results show significant improvement in collision classifi-

cation performance over the existing state-of-the-art. The SE3NN model with the active

training procedure, which is the model to which both the active learning-based training

method and the link SE(3) configuration space representation are applied, demonstrate

the best performance in every performance metric.

The proposed methods successfully demonstrate novel collision distance estimation

performance when applied to a static environment, but if the environment changes, e.g.,

changing the robot base position, the training process must be repeated. In future work,

we will address this problem through transfer learning or other learning-based methods;

it may be possible to quickly fine-tune or retrain the model with some new data points

for different environments.

4
PairwiseNet: Pairwise Collision

Distance Learning

4.1 Introduction

Motion planning algorithms such as RRT [2, 3, 4] and its many variants [6, 7, 8, 9]

all require the collision distance - the minimum distance between the robot and its

nearest obstacle (including other links for self-collision avoidance). Among these, some

even require the derivatives of the collision distances. It is well-known that calculating

this distance involves finding the minimum distance between each robot link and the

obstacles, which can be computationally intensive, especially for high-dof robots with

complex geometries.

To alleviate the computational burden, one possible solution is to train a collision

distance function using data. By collecting sufficient data consisting of robot configura-

tions and their corresponding collision distances, machine learning models such as ker-

nel perceptron models [26], support vector machines (SVM) [27], and neural networks

53

54 PairwiseNet: Pairwise Collision Distance Learning

[18, 28, 30, 31, 32], can be used to learn the collision distance function. This learned

function can then be used to quickly determine if a given configuration is collision-free.

While these data-driven approaches have demonstrated satisfactory results for low-dof

robot systems, often they perform poorly for higher-dof robots. The challenge lies in

the fact that the collision distance function for higher-dof robots is complex and highly

non-convex.

Another challenge faced by existing data-driven methods is their sensitivity to small

environmental changes. For example, the addition of new obstacles or a change of the

robot’s base position can lead to a completely different collision distance function; for

many of these methods, the entire training procedure must be repeated, from data col-

lection to model training. (One possible exception is [26], which proposes an efficient

model update strategy for dynamic environment updates, but their method is limited to

low-dof robot systems and still requires an additional training procedure.)

We present PairwiseNet, a collision distance estimation method that provides a promis-

ing alternative to existing data-driven approaches used for predicting the global collision

distance. Instead of directly estimating the global collision distance, PairwiseNet focuses

on estimating the pairwise collision distance: the minimum distance between two ele-

ments in the robot system. The PairwiseNet model takes as input the point cloud data

of two geometric shapes and their relative transformation and outputs the minimum dis-

tance between these two shapes. To estimate the global collision distance, PairwiseNet

first predicts the minimum distances for every possible pair of elements in the system.

It then selects the minimum of these pairwise distances as the estimate for the global

collision distance (see Figure 4.1). The efficient parallel batch computation of the neural

network enables the rapid prediction of minimum distances between pairs of elements.

Compared to the complex and highly non-convex function of the global collision

distance, the minimum distance function between a pair of elements is simpler and

4.1. Introduction 55

C
o

lli
si

o
n

 D
is

ta
n

ce
𝑓 𝜃

𝑞

(a
)

R
o

b
o

t
En

v.
(c

)
G

lo
b

al
 c

o
lli

si
o

n
 d

is
ta

n
ce

m
in
(⋅
)

P
ai
rw

is
e
N
et

(b
)

Pa
ir

w
is

e
 c

o
lli

si
o

n
 d

is
ta

n
ce

Fi
gu

re
4.

1:
A

n
ill

us
tr

at
io

n
of

th
e

gl
ob

al
co

lli
si

on
di

st
an

ce
es

tim
at

io
n

th
ro

ug
h

Pa
ir

w
is

eN
et

.(
a)

R
ob

ot
en

vi
ro

nm
en

t
at

a
gi

ve
n

jo
in

tc
on

fig
ur

at
io

n.
(b

)
Pa

ir
w

is
e

co
lli

si
on

di
st

an
ce

s
fo

r
al

le
le

m
en

tp
ai

rs
ar

e
de

te
rm

in
ed

th
ro

ug
h

Pa
ir

w
is

eN
et

.

(c
)

T
he

sm
al

le
st

of
th

es
e

di
st

an
ce

s
be

co
m

es
th

e
gl

ob
al

co
lli

si
on

di
st

an
ce

.

56 PairwiseNet: Pairwise Collision Distance Learning

easier to train. By breaking down the challenging task of learning the global collision

distance into smaller sub-problems of the pairwise collision distance learning, our Pair-

wiseNet achieves significant performance improvements for high-dof robot systems.

Another advantage of PairwiseNet is its applicability to any system composed of

known shape elements (shape elements that are sufficiently trained for estimating pair-

wise collision distance). The trained PairwiseNet model can be used without the need

for additional training or modifications in such systems. For example, consider a sce-

nario in which a sufficiently large dataset containing pairwise collision distances be-

tween the links of a Panda robot is available. In this case, the PairwiseNet model

trained using this dataset can be applied to any system consisting of multiple Panda

robots, regardless of the number of robots or their respective positions, as this is pos-

sible because the collision distance estimation for such systems can be broken down

into pairwise collision distance estimations for each element pair, and these pairwise

distances are already known by the trained PairwiseNet model. As long as the system

is exclusively comprised of shape elements that have been learned during training, the

trained PairwiseNet model is applicable to any such system. Even in cases where the

system undergoes changes, such as changing the robot’s base position or adding another

robot arm, if the geometric shape elements of the system remain unchanged, the trained

PairwiseNet model remains applicable to the changed system without any modifications.

Our approach has been evaluated in high-dof multi-arm robot manipulation systems,

ranging from the two-arm (14-dof) to four-arm (28-dof) systems, as well as a single-

arm robot with obstacles. The results demonstrate that our approach outperforms ex-

isting learning-based methods in terms of collision distance regression error, collision

checking accuracy, and notably the False Positive Rate with the collision-free guaran-

teed threshold (Safe-FPR). Moreover, our approach performs better even when using a

single trained PairwiseNet model for all multi-arm systems.

4.2. Related Works 57

4.2 Related Works

Several machine learning-based methods for collision distance estimation have been pro-

posed due to their computationally efficient inference procedures for collision distances

and derivatives. [8] used SVM classifiers to identify whether each pair of parts of a hu-

manoid robot was in a safe or dangerous self-collision status given a specific joint con-

figuration. Only the minimum distances of the dangerous pairs of parts were estimated

using a capsule-based BV algorithm, simplifying the calculation of collision distances

and derivatives. [27] also employed an SVM classifier for a 14-dof dual-arm robot ma-

nipulation system. The SVM classifier inputs a vector consisting of the positions of all

joints in the system and outputs a collision label of either <1 for a collision or >1 for

a collision-free state. In [28], SVM and neural network models were trained to predict

the collision label of a humanoid manipulation system at a given joint configuration.

Separate collision classifier models were trained for every sub-part pairs, such as the

left arm and right leg, resulting in a total of 10 sub-models used for collision label

predictions.

Similar to [27], [30] utilized joint positions as inputs for their multi-layer percep-

tron neural network model. Meanwhile, [18] employed a positional encoding vector of

the joint configuration as input for their neural network model. [31] trained a neural

network model to estimate the collision distance using an extended configuration con-

taining both joint and workspace configurations as input, with the model outputting the

collision distance of the system. DiffCo [26] is a collision classifier model based on

kernel perceptron that generates both the collision score and its derivative. DiffCo also

utilizes an efficient active learning strategy that adjusts the trained collision score func-

tion for dynamic updates in the environment. Similarly, CollisionGP [29], a Gaussian

process-based collision classifier model, has been proposed. CollisionGP determines the

58 PairwiseNet: Pairwise Collision Distance Learning

collision query for a given joint configuration and also measures the uncertainty of the

model in its prediction. Recently, GraphDistNet [32] was proposed as a Graph Neural

Network (GNN) model for collision distance estimation. The model inputs the infor-

mation on geometric shapes, which are represented as graphs for both the manipulator

links and obstacles. GraphDistNet then utilizes the geometric relationship between the

two graphs to predict the collision distance.

Similar to our method, some works [44, 45] approached the challenge by decom-

posing a complex problem into several simpler sub-problems. [44] proposed a novel

configuration space decomposition method. This method separates the robot into dis-

joint components and trains a classifier for the collision-free configuration space of each

component. Since the components near the base link have a relatively low-dimensional

configuration space, training classifiers for these components is easier than training a

single classifier for the whole system. [45] trained a collision predictor for generating

collision-free human poses. They focused on the fact that collisions only affect local

regions of the human body. Therefore, they designed a set of local body parts, and the

collision prediction was accordingly decomposed into these local parts.

The effectiveness of these existing methods has been experimentally demonstrated

only for low-dof robot systems; their performance degrades substantially for high-dof

systems operating in complex environments. In particular, most learning-based collision

distance estimation methods establish a collision-free guaranteed threshold to ensure that

no collisions occur during actual manipulation. However, existing methods often suffer

from a high false positive rate, resulting in overly cautious collision detection when uti-

lizing the collision-free guaranteed threshold. In comparison, our method demonstrates

effective collision distance estimation performance even in high-dof robot systems and

maintains low false positive rates when using the collision-free guaranteed threshold.

4.3. Learning Pairwise Collision Distance 59

4.3 Learning Pairwise Collision Distance

4.3.1 Problem Formulation

We assume the availability of a simulator environment of the target system, which in-

cludes the robot kinematics and geometric shapes of links and obstacles. We aim to

determine the optimal model parameter ψ for the pairwise collision distance estima-

tion model fψ, which can predict the collision distance between any pair of geometric

shapes. The model takes the point cloud data of two geometric shapes Pi, Pj (expressed

in each corresponding object coordinates) and the relative transformation Tij ∈ SE(3)

as input, and outputs the estimated pairwise collision distance d̂ij between the two

shapes.

d̂ij = fψ(Pi,Pj , Tij) (4.3.1)

After training the model, the global collision distance can be determined by the proce-

dure as shown in Figure 4.2. First, a set of element pairs and corresponding transfor-

mations S(q) = {(Pi,Pj , Tij(q))}i,j in the given joint configuration q is extracted from

the target robot system. Next, PairwiseNet determines the pairwise collision distance

between each element pair in S(q), and the minimum distance found among these is

taken as the global collision distance of the robot system. The global collision distance

estimator function Fψ can be expressed in the form of

d̂col(q) = Fψ(q; fψ,S) (4.3.2)

= min
(Pi,Pj ,Tij(q))∈S(q)

fψ(Pi,Pj , Tij(q)) (4.3.3)

where d̂col(q) is the estimated global collision distance in the joint configuration q. Us-

ing the batch computation of the neural network model, we can efficiently estimate the

minimum distances of element pairs.

60 PairwiseNet: Pairwise Collision Distance Learning

R
o

b
o

t En
v.

C
o

llisio
n

 D
istan

ce
𝑑
𝑐
𝑜
𝑙

A
 B

atch
 o

f size 𝐵
o

f
Elem

en
t Pairs

𝐵
o

f Po
in

tclo
u

d
 Pairs

𝑇
1
2
∈
𝑆
𝐸
(3
)

𝐵
o

f Tran
fo

rm
atio

n
s

En
co

d
er

En
co

d
er

Sh
ared

𝐵
×
3
2

𝐵
×
3
2

𝐵
×
1
2

V
ecto

rize

M
in

. D
istan

ces 𝑑
m
in

o
f A

ll Pairs

Extract Elem
en

t Pairs

𝐵
×
7
6

Fu
lly-co

n
n

ected
N

eu
ral N

etw
o

rk

m
in
(⋅)

Stack as a B
atch

Concat.

𝐵
×
1

* O
n

ly w
h

en
 Train

in
g

…
.

Elem
en

t 2

𝑇
1
2

Elem
en

t 1

(a) D
ata P

rep
ro

cessin
g

(b
) En

co
d

er
(c) R

egresso
r

Figure
4.2:

A
n

illustration
of

estim
ating

the
global

collision
distance

via
Pairw

iseN
et.

4.3. Learning Pairwise Collision Distance 61

4.3.2 Strategy for Decomposing System Elements

PairwiseNet achieves robust collision distance estimation performance by dividing the

robot system into multiple elements and calculating the pairwise collision distance be-

tween these elements. Therefore, to apply PairwiseNet, the robot system must be divided

into these elements as a preliminary step. Each element must be a rigid body with an

unchanging shape, and in the case of the multi-arm systems in Section 4.4, simply each

link was treated as a separate element. Since PairwiseNet does not require each element

to be convex, non-convex links of the Panda robot arm can be used without additional

decomposition.

However, PairwiseNet’s superior performance is attributed to the fact that the pair-

wise collision distance functions between elements are much easier to learn than the

global collision distance function. Therefore, if an individual element’s shape is complex

and highly non-convex, learning the corresponding pairwise collision distance may be-

come difficult, potentially diminishing PairwiseNet’s effectiveness. Hence, a well-considered

balance must be found between the complexity of decomposing the system and the per-

formance of PairwiseNet. In our experiments (see Section 4.5), we decompose obstacles

into several rectangular shape elements. Detailed information about this process is pro-

vided in Section 4.5.1.

4.3.3 Network Architecture

PairwiseNet consists of two main components: an encoder that creates a shape feature

vector from a point cloud data of a geometric shape, and a regressor that predicts the

minimum distance between two shape feature vectors and a transformation (Figure 4.3).

The encoder employs two EdgeConv layers from Dynamic Graph Convolutional Neural

Network [46] to extract 32-dimensional shape feature vectors from the point cloud data.

62 PairwiseNet: Pairwise Collision Distance Learning

Element 2

𝑇12

Element 1
A Pointcloud Pair

𝑇12 ∈ 𝑆𝐸(3)
A Tranformation

Encoder

Encoder

Shared
32

32

Vectorize

Concat.

An Element Pair

12

76

Regressor

A Pairwise
Collision Distance

PairwiseNet

Figure 4.3: An illustration of the architecture of PairwiseNet.

The regressor then combines the two shape feature vectors and the transformation into

a single vector and uses four fully connected layers with hidden state dimensions of

(128, 128, 128) to output the minimum distance. The training of PairwiseNet uses the

mean-squared error (MSE) between the estimated and actual collision distances as the

loss function

L =
1

|Dtrain|
∑

(Pi,Pj ,Tij ,dij)∈Dtrain

||fψ(Pi,Pj , Tij)− dij ||2 (4.3.4)

where dij ∈ R is the ground-truth pairwise collision distance, and Dtrain denotes the

training dataset.

4.3.4 Efficient Inference Strategy of PairwiseNet

Our approach includes an efficient inference strategy for the global collision distance

calculation by eliminating the need to run the encoder, a deep neural network that trans-

forms the point cloud data into feature vectors. Since the point cloud data of element

pairs remains unchanged regardless of the joint configuration, shape feature vectors of

4.4. Collision Distance Learning for Multi-arm Robot Systems 63

element pairs can be calculated and saved once for each robot system before calculating

the collision distance. Using these pre-calculated shape feature vectors, PairwiseNet is

able to estimate the collision distance only using the regressor, a simple neural network

composed of fully-connected layers. Implemented in PyTorch [47], PairwiseNet is ca-

pable of performing collision distance estimation for the joint configuration in less than

0.5ms. Details on the inference time for PairwiseNet can be found in Section 4.6.

4.4 Collision Distance Learning for Multi-arm Robot Sys-

tems

4.4.1 Experimental Setting

Training Dataset for PairwiseNet. We collected pairwise collision distance data from

dual-arm robot manipulation systems. For the diversity of the dataset, we utilize dual-

arm robot systems with various relative positions between the two arms as illustrated

in Figure 4.4. We sample θ and ϕ with eight equally spaced values within the range

[0, 2π), and sample R with five equally spaced values within the range [0.1m, 1.0m].

In total, we use 320 different combinations of (R, θ, ϕ), resulting in 320 different dual-

arm robot systems. For each system, we sampled joint configurations uniformly within

the joint limits and extracted a set of element pairs S(q) at each joint configuration q

(Figure 4.2(a)). To obtain the ground-truth pairwise collision distance dij ∈ R between

the element pair, we use the collision distance estimation algorithm implemented in

PyBullet [43]. If the two elements collide, the collision distance is the negative of their

penetration depth (the distance by which one convex object enters into the interior of

another during a collision [36]). The resulting training dataset Dtrain contains 3 million

data points.

64 PairwiseNet: Pairwise Collision Distance Learning

Robot 1

Robot 2

𝜙

𝜃

𝑅Robot 1

Robot 2

Figure 4.4: An illustration of multi-arm robot systems for generating the training dataset.

Training data points are generated from dual-arm robot environments with various rel-

ative positions between two arms.

Target Systems. For the test environments, we selected three high-dof multi-arm robot

systems as illustrated in Figure 4.5. We employed 7-dof Franka Emika Panda robot arms

for our test environments. For the test dataset of each target environment, we sampled

one million joint configurations from a uniform distribution within the joint limits.

Baselines. We trained our method and other existing collision distance estimation meth-

ods.

• Capsule: A bounding volume method with capsule-shape collision primitives used

in [8, 38].

• JointNN: A fully-connected neural network model that directly uses joint config-

urations as inputs (the input representation used in [8, 28]).

• PosNN: A fully-connected neural network model that uses joint positions as inputs

(the input representation used in [27, 30]).

4.4. Collision Distance Learning for Multi-arm Robot Systems 65

(a) (b)

𝑑
𝑑 = 0.3m

𝑑

𝜃

𝜃 = 120°
𝑑 = 0.5m

(c)

𝑑

𝑑 = 0.5m

Figure 4.5: Test environments for the collision distance learning performance evaluation.

We selected (a) two arms, (b) three arms, and (c) four arms robot systems.

66 PairwiseNet: Pairwise Collision Distance Learning

• jointNERF [18]: A fully-connected neural network model that uses positional em-

bedding vectors of joint configurations as inputs.

• ClearanceNet [31]: A neural network model that takes joint configurations as

inputs and utilizes two fully-connected layers, each followed by a dropout layer.

• DiffCo [26]: A kernel perceptron model that takes joint configurations as inputs

and outputs the collision score.

Existing collision distance learning methods were trained on one million uniformly sam-

pled data points within the joint limits for each target system. For the DiffCo model, we

were limited to a dataset size of 75,000 data points, as this was the maximum feasible

size for kernel perceptron training on our hardware (AMD Ryzen Threadripper 3960X,

256GB RAM, and NVIDIA GeForce RTX4090 with 24GB VRAM).

Evaluation Metrics. We evaluate the performance of collision distance learning using

four metrics: MSE, AUROC, Accuracy, and Safe-FPR. These metrics target both the

collision distance regression and collision classification, with a robot configuration being

classified as a collision if the collision distance is below the threshold ϵ (for DiffCo,

if the collision score is above the threshold). MSE represents the mean squared error

between the ground truth and estimated global collision distance. AUROC is the area

under the receiver operating characteristic curve for the collision classification. Accuracy

is the classification accuracy of collisions with the threshold ϵ = 0. Lastly, in order for

the trained collision distance estimation model to be used in actual path planning tasks,

a sufficiently conservative threshold must be used to ensure that collisions cannot occur.

However, the more conservative the threshold used, the more false alarms will occur

where non-collision robot configurations are incorrectly classified as collisions. Safe-

FPR is used to evaluate performance in these situations, representing the false alarm rate

4.4. Collision Distance Learning for Multi-arm Robot Systems 67

when using the least yet sufficient conservative threshold that can classify all collision

configurations in the test dataset as collisions.

4.4.2 Results

Performance Evaluation. Table 4.1 presents the evaluation results of PairwiseNet and

other existing methods. Notably, PairwiseNet achieves significantly lower MSE values

compared to the baseline methods. In all three environments (two, three, and four arms),

PairwiseNet’s MSE is at least an order of magnitude smaller than that of the best-

performing baseline. For instance, in the four-arm environment, PairwiseNet’s MSE (0.46e-

4) is approximately 1/15 of the next best result (Capsule at 6.66e-4). Furthermore, Pair-

wiseNet greatly surpasses the baselines in terms of safe-FPR, consistently achieving the

lowest values across all environments. This indicates a superior ability to avoid false

collision alarms, which is crucial for efficient robot operation. Importantly, we observe

that the performance gap between PairwiseNet and the baselines widens as the com-

plexity of the system increases. This is particularly evident in the four-arm environment,

where PairwiseNet maintains high performance while other methods show more signif-

icant degradation. These results underscore PairwiseNet’s robustness and scalability in

handling higher-dof systems, a critical advantage for complex robotic applications.

Following the quantitative metrics, Fig. 4.6 presents the Detection Error Trade-off

(DET) curves, which visualize the relationship between false positive rates (FPR) and

false negative rates (FNR) across different detection thresholds. DET curves are used to

evaluate binary classifiers, where curves closer to the origin (bottom-left) indicate supe-

rior performance as they represent lower error rates for all threshold choices. The curves

clearly demonstrate PairwiseNet’s superior detection capabilities, as its curve (purple

68 PairwiseNet: Pairwise Collision Distance Learning

solid line) consistently lies closest to the origin across all test environments. The safe-

FPR metric can be visualized in these DET curves; it represents the minimum false

positive rate while maintaining zero false negatives, corresponding to the point where

the curve intersects the x-axis (FNR = 0) closest to the origin. We indicate PairwiseNet’s

safe-FPR values as purple dots on its curves.

Generalizability. Existing learning methods have used individual models trained on

each system’s specific dataset to estimate collision distance in the three target robot

systems, as the global collision distance function (2.2.4) differs for each system. In

contrast, the pairwise collision distance function (4.3.1) remains the same even when

robot base positions or the number of robot arms change. Consequently, PairwiseNet

can estimate collision distance using a single model for all three target robot systems,

and its performance even surpasses that of existing methods that use individual models

for each system.

We extended our validation of PairwiseNet to include robot arm systems arranged

asymmetrically and in an irregular manner, in addition to the three multi-arm robot

systems used in our experiments. These additional systems are illustrated in Figure 4.7.

In each systems, the robot arms are arranged in a more irregular and complex manner

than in the previously used systems, resulting in a greater variety of relative positional

relationships between the arms.

We used the trained PairwiseNet model that was originally used for our multi-arm

robot systems. Although these new robot systems have complex arrangements of robot

arms, they still consist of Panda robot arms, which have been sufficiently trained. There-

fore, PairwiseNet can be applied directly to these systems without the need for addi-

tional training.

4.4. Collision Distance Learning for Multi-arm Robot Systems 69

Table 4.1: Collision distance estimation performances of PairwiseNet versus baseline

methods

Env. Methods MSE AUROC
Accuracy

(ϵ = 0)
safe-FPR

Fig. 4.5 (a)

(Two arms)

Capsule 5.47e-4 0.9995 0.9776 0.0247

JointNN 3.63e-4 0.9955 0.9794 0.3200

PosNN 2.71e-4 0.9970 0.9823 0.1476

jointNERF 2.98e-4 0.9962 0.9808 0.2371

ClearanceNet 1.11e-3 0.9853 0.9621 0.4570

DiffCo* - 0.9824 0.9818 0.3141

PairwiseNet (ours) 0.24e-4 0.9998 0.9941 0.0200

Fig. 4.5 (b)

(Three arms)

Capsule 5.96e-4 0.9993 0.9775 0.0241

JointNN 9.69e-4 0.9902 0.9721 0.2679

PosNN 5.41e-4 0.9951 0.9801 0.1336

jointNERF 8.22e-4 0.9920 0.9747 0.2213

ClearanceNet 4.63e-3 0.9499 0.9395 0.6067

DiffCo* - 0.9603 0.9453 0.5858

PairwiseNet (ours) 0.24e-4 0.9997 0.9944 0.0189

Fig. 4.5 (c)

(Four arms)

Capsule 6.66e-4 0.9986 0.9468 0.0694

JointNN 1.59e-3 0.9718 0.9183 0.6988

PosNN 7.18e-4 0.9885 0.9478 0.5371

jointNERF 1.30e-3 0.9778 0.9280 0.6260

ClearanceNet 6.67e-3 0.8738 0.8202 0.9965

DiffCo* - 0.8811 0.8306 0.9874

PairwiseNet (ours) 0.46e-4 0.9994 0.9858 0.0650

*DiffCo outputs the collision score from -1 (collision-free) to 1 (collision).

70 PairwiseNet: Pairwise Collision Distance Learning

0
0.1

0.2
0.3

0.4

0

0.1

0.2

0.3

0.4

0
0.1

0.2
0.3

0.4

0

0.1

0.2

0.3

0.4

0
0.1

0.2
0.3

0.4

0

0.1

0.2

0.3

0.4

JointN
N

P
osN

N
jointN

E
R

F
C

learanceN
et

D
iffC

o
P

airw
iseN

et

False P
ositive R

ate
False P

ositive R
ate

False P
ositive R

ate

False Negative Rate

Tw
o arm

s
Three arm

s
Four arm

s

Figure
4.6:

D
etection

E
rror

Trade-off
(D

E
T

)
curves

for
collision

detection
m

ethods.
C

urves
closer

to
the

origin

indicate
better

perform
ance,

w
ith

Pairw
iseN

et
(purple

solid
line)

achieving
superior

detection
accuracy

across
all

test
environm

ents.

4.4. Collision Distance Learning for Multi-arm Robot Systems 71

𝑑, 𝜃 = 0.5𝑚, 45°

𝑑

𝜃

𝑑

𝑑 = 0.5𝑚

(a) (b)

𝑑1

𝜃

𝑑2

𝑑1
𝜃

𝑑2

𝑑1, 𝑑2, 𝜃 = 0.5𝑚, 0.7𝑚, 30° 𝑑1, 𝑑2, 𝜃 = 0.5𝑚, 0.3𝑚, 45°

(d)(c)

Figure 4.7: Illustrations of the top views of various base positions within multi-arm

robot systems.

72 PairwiseNet: Pairwise Collision Distance Learning

Table 4.2: Collision distance estimation performances of PairwiseNet for various multi-

arm systems

Env. MSE AUROC
Accuracy

(ϵ = 0)
safe-FPR

Fig. 4.7 (a) (Three arms) 0.24e-4 0.9997 0.9943 0.0341

Fig. 4.7 (b) (Three arms) 0.17e-4 0.9999 0.9987 0.0048

Fig. 4.7 (c) (Four arms) 0.43e-4 0.9991 0.9859 0.0611

Fig. 4.7 (d) (Four arms) 0.27e-4 0.9995 0.9931 0.0292

We have presented the results of PairwiseNet’s collision distance estimation perfor-

mance in Table 4.2. Upon examining these results, we observed that PairwiseNet per-

formed well across all robot systems and metrics, regardless of the complexity of the

arrangement of robot arms. The consistency in performance across these varying con-

figurations demonstrates the robustness of PairwiseNet, affirming that there is no sig-

nificant difference in the quality of collision distance estimation between these different

scenarios.

4.5 Collision Distance Learning for a Single-arm Systems

with Obstacles

We perform experiments in a 7-dof single-arm system with complex obstacles (Fig-

ure 4.8). This workspace is populated with obstacles such as shelves and tables that

add complexity to the robot arm’s operational landscape. To validate the collision dis-

tance estimation performance in this system, we generate a human-guided demonstration

with the robot arm occasionally sweeping close to, and sometimes colliding with, tables

and shelves for the test dataset.

4.5. Collision Distance Learning for a Single-arm Systems with Obstacles 73

(a) (b)

Figure 4.8: (a) Simulation and (b) real-world environments for a single-arm system with

obstacles.

4.5.1 Experimental Setting

In this experiment, we decomposed tables into a tabletop and four legs, and shelves

into six plates. This strategy was employed not only to simplify complex obstacles and

make the pairwise collision distance more tractable but also to leverage the symmetry

of the obstacle structure. For example, the bottom, middle, and top plates of the shelf

have the same shape, so dividing them into separate elements allows for more efficient

use of training data. Furthermore, the fact that the decomposed elements of the tables

and shelves take the form of flat rectangular shapes can be beneficial to the learning

process. Apart from this, the training methods of PairwiseNet and baselines, as well as

the dataset generation and model architectures used, are identical to those employed in

the experiments for multi-arm robot systems.

4.5.2 Results

The collision distance estimation results are presented in Figure 4.9. Note that Figure

4.9 displays only four snapshots from the demonstration; the complete video can be

74 PairwiseNet: Pairwise Collision Distance Learning

(b)

(d)

(a)

(c)

Ground Truth PairwiseNet ClearanceNet JointNN

Figure 4.9: Collision distance estimation results for a single-arm system with obstacles.

The top images display a human-guided robot arm, while the corresponding plots at the

bottom illustrate the ground truth and estimated collision distances from PairwiseNet and

other baselines at time t = (a) 22.9s, (b) 39.6s, (c) 53.7s, and (d) 61.6s, respectively.

4.6. Inference Time of PairwiseNet 75

accessed in the supplementary1video. Compared to the evaluated baselines, PairwiseNet

consistently exhibits the highest accuracy in estimating the actual collision distance. It

reliably detects collisions between the robot arm and obstacles in the majority of cases.

In contrast, the other baselines either fail to trigger collision alarms when a collision

occurs (Figure 4.9 (b)) or produce false collision alarms when no collision is present

(Figure 4.9 (c), (d)). PairwiseNet stands out by consistently and accurately identifying

collisions between the robot and obstacles.

4.6 Inference Time of PairwiseNet

PairwiseNet incorporates an efficient inference strategy – using only the regressor net-

work during the inference process, and computing multiple element pairs as a single

batch. Thus, despite calculating collision distances pairwise like traditional non-data-

driven methods, it demonstrates an inference speed as fast as other existing data-driven

approaches. We have compared the inference speed of PairwiseNet with that of standard

non-data-driven methods and displayed the results in Table 4.3. The standard collision

distance calculation algorithms used for comparison are from the Flexible Collision Li-

brary (FCL) [39].

The test environments were multi-arm robot systems with two, three, and four Franka

Emika Panda robot arms, containing 64, 192, and 384 collision pairs respectively. For

each robot arm, we prepared three different geometric representations: original mesh,

simplified convex mesh (created using convex hull), and capsule primitives for com-

prehensive comparison. More details about these geometric representations are provided

in Appendix B.2. We measured the inference time for estimating collision distances for
1https://youtu.be/N5Q8ZXbB6Uc

https://youtu.be/N5Q8ZXbB6Uc

76 PairwiseNet: Pairwise Collision Distance Learning

1,000 joint configurations using both classical FCL methods with these different geomet-

ric representations and our PairwiseNet approach with both CPU and GPU implementa-

tions. A key advantage of our learning-based collision distance estimator is its ability to

analytically compute gradients with respect to joint configurations. We also measured

the inference time of PairwiseNet’s gradient computation, which is represented under

the PairwiseNet (gradient) entries in Table 4.3.

Additionally, PairwiseNet is capable of receiving multiple joint configurations as a

single batch input; it can simultaneously compute the collision distances for all the joint

configurations. This is an efficient feature for tasks that require simultaneous collision

checks for multiple joint configurations. In our experiments, we also measured the time

taken to calculate both the collision distances and their gradients for 1,000 joint con-

figurations at once through PairwiseNet, and this is represented under the PairwiseNet

(batch) and PairwiseNet (gradient, batch) entry in Table 4.3. PairwiseNet was imple-

mented using PyTorch [47]. FCL were implemented using the python-fcl library.

Thus, all the time measurements are conducted within Python code. The experiments

were carried out in an environment equipped with an AMD Ryzen 9 7950X (16 cores,

32 threads), NVIDIA RTX 4090, and 125GB of RAM.

While FCL with simplified geometric representations (convex meshes and capsule

primitives) demonstrates reasonable computational efficiency for real-time applications,

PairwiseNet achieves comparable performance even when running on CPU. When uti-

lizing GPU acceleration, PairwiseNet significantly outperforms these classical methods.

Notably, as the number of collision pairs increases with system complexity (from two

to four arms), the computational cost of FCL scales roughly linearly, while PairwiseNet

4.6. Inference Time of PairwiseNet 77

Table 4.3: Inference time comparison: PairwiseNet versus classical collision distance

estimation methods

Methods
Inference time for 1000 joint poses (s)

Two arms

(64 pairs)

Three arms

(192 pairs)

Four arms

(384 pairs)

FCL (original mesh) 13.87 43.97 92.63

FCL (convex mesh) 0.0714 0.1682 0.3265

FCL (capsule) 0.0294 0.0582 0.1130

CPU GPU CPU GPU CPU GPU

PairwiseNet 0.0774 0.0630 0.1480 0.0646 0.2065 0.0671

PairwiseNet (batch) 0.0226 0.0001 0.1066 0.0003 0.2192 0.0003

PairwiseNet (gradient) 0.1813 0.1484 0.3038 0.1380 0.3974 0.1407

PairwiseNet (gradient, batch) 0.0697 0.0004 0.2257 0.0004 0.4727 0.0004

78 PairwiseNet: Pairwise Collision Distance Learning

maintains relatively consistent inference times, particularly in GPU operations. This ad-

vantage becomes even more pronounced when leveraging PairwiseNet’s batch process-

ing capability, which enables simultaneous evaluation of multiple configurations. Fur-

thermore, as a learning-based method, PairwiseNet offers the unique ability to ana-

lytically compute gradients with respect to joint configurations – a crucial feature for

optimization-based motion planning. The gradient computation speed of PairwiseNet is

remarkably efficient, comparable to the basic collision distance calculations of clas-

sical methods. This efficiency extends to batch gradient computations as well, where

GPU acceleration enables extremely fast parallel processing of multiple configurations.

These results demonstrate PairwiseNet’s practical viability for real-world robotics ap-

plications, particularly in scenarios requiring rapid collision checking or gradient-based

optimization.

4.7 Conclusion

In this paper, we present PairwiseNet, a novel collision distance estimation method that

estimates the minimum distance between a pair of elements instead of directly predict-

ing the global collision distance of the robot system. By simplifying the problem into

smaller sub-problems, our approach achieves significant performance improvements for

high-dof robot systems compared to methods that directly predict the global collision

distance. Additionally, PairwiseNet is capable of handling environmental changes such

as robot base repositioning without requiring additional training or fine-tuning. We eval-

uate and compare the collision distance estimation performance of PairwiseNet for both

high-dof multi-arm robot systems and single-arm systems in the presence of obstacles,

and validate its accurate collision distance estimation and generalization to environmen-

tal changes.

5
Planning with Collision Distance

Estimator

5.1 Introduction

In this chapter, we demonstrate practical applications of our proposed novel methods

for learning collision distance in high-dof robot systems. Our approach stands out for

its exceptional accuracy in complex, high-dof configurations, where existing methods

often struggle. We showcase how our learning-based collision distance estimator can be

applied to various planning tasks, leveraging the general advantages of such estimators:

• Rapid calculation of collision distances

• Batch processing capability for simultaneous estimation of collision distances across

multiple joint configurations

• Ability to compute derivatives of collision distance with respect to joint configu-

rations

79

80 Planning with Collision Distance Estimator

To highlight both the general benefits of learning-based collision distance estimators and

the unique strengths of our method, we present two challenging applications:

• Offline trajectory optimization (Section 5.2): This task demonstrates the estima-

tor’s batch processing capability and efficient derivative calculation in a high-dof

setting (a 28-dof four-arm robot system).

• Real-time collision avoidance (Section 5.3): This application showcases the esti-

mator’s fast inference speed for collision distances and their derivatives in a com-

plex environment (a single-arm robot system with obstacles).

These examples, performed in scenarios that are particularly challenging for existing

methods, illustrate the versatility, efficiency, and superior accuracy of our proposed col-

lision distance estimator in addressing complex path planning challenges.

5.2 Offline Trajectory Optimization for a Four-arm Robot

System

In this section, we perform trajectory optimization to generate collision-free paths. This

gradient-based optimization process requires the derivative of collision distances with

respect to joint configurations. It benefits significantly from the batch calculation ca-

pability of learning-based collision distance estimators, as collision distances and their

derivatives for all joint configurations along the path must be estimated at each opt-

imization step.

Our experiments are conducted in a complex, high-dof robot system, presenting a

challenge that is nearly impossible for existing methods due to their limited applicability

to high-dof systems. This scenario showcases the unique strengths of our approach in

handling such challenging environments.

5.2. Offline Trajectory Optimization for a Four-arm Robot System 81

The trajectory optimization for collision-free paths is a constrained optimization prob-

lem with equality and inequality constraints. Given the start and end poses, the objective

is to minimize the path length while ensuring that joint configurations remain within

their limit ranges and collision distances stay above a safe threshold ϵ along the entire

path q(t). Mathematically, this can be expressed as:

minimize
q(t)

length[q(t)]

subject to



q(0) = qi, q(T) = qf

qmin ≤ q(t) ≤ qmax

q̇min ≤ q̇(t) ≤ q̇max

Fψ(q(t); fψ,S) ≥ ϵ

∀t ∈ [0, T],

(5.2.1)

where qi and qf are the start and end poses, respectively. The function length can

represent either the path length in the joint configuration space or the path length in task

space (i.e., the path length of the end-effectors in the system). In our experiments, we

use a combination of both lengths for the optimization objective to ensure smoothness

of the optimized path.

We modeled the trajectory q(t) as a natural cubic spline curve defined by m via-

points qm with corresponding timestamps tm ∈ (0, T). This approach uses third-order

polynomials between via-points, ensuring a smooth path that passes through each point.

To verify the inequality constraints in (5.2.1) at each optimization step, we randomly

sampled 10,000 samples of t from the interval [0, T].

The optimization problem (5.2.1) presents significant challenges due to its highly

non-convex nature and numerous local minima. These difficulties are particularly pro-

nounced in complex systems like our four-arm robot system, where the arms’ move-

ments are intricately intertwined. Hence, the suitable choice of initial trajectory q(t) is

82 Planning with Collision Distance Estimator

a crucial factor in the optimization process. Our initial attempts to use a straight path in

joint configuration space as the initial trajectory often failed to yield feasible solutions.

To address this, we adopted a two-step approach: first, we employed the RRT-connect

algorithm [3] to generate suboptimal via-points, then used these as the initial via-points

for q(t) in our optimization process.

Figure 5.1 illustrates three optimized trajectories. For each trajectory, the initial (t =

0) and final (t = 5) poses are predefined, with each pose set to have the four robot arms

intricately intertwined. Planning in such a complex system necessitates highly accurate

collision distance estimates. Our approach successfully demonstrates the ability to per-

form planning in these challenging scenarios, as evidenced by the resulting trajectories.

Figure 5.2 displays the ground truth collision distances along with the estimated col-

lision distances from our approach and baseline methods for each optimized trajectory.

Given that these trajectories involve four robot arms moving in intricate, intertwined

configurations, the element pair determining the collision distance (i.e., the closest el-

ement pair) changes dynamically. This dynamic nature is evident in the ground truth

collision distance plot (black line) in Figure 5.2, which exhibits abrupt changes rather

than smooth transitions. Existing methods, which attempted to learn this complex global

collision distance directly, show significant deviations from the ground truth in their pre-

dictions. In contrast, our methodology, which focuses on learning pairwise collision dis-

tances for each element pair, uniquely succeeds in accurately predicting these complex

collision distances.

5.2. Offline Trajectory Optimization for a Four-arm Robot System 83

Traj.#1 Traj.#2

t
=

0

Traj.#3

t
=

1
t

=
2

t
=

3
t

=
4

t
=

5

Fi
gu

re
5.

1:
O

pt
im

iz
ed

tr
aj

ec
to

ri
es

fo
r

th
e

28
-d

of
fo

ur
-a

rm
ro

bo
t

sy
st

em
:

th
re

e
so

lu
tio

ns
de

m
on

st
ra

tin
g

co
lli

si
on

-f
re

e

pa
th

s
in

a
co

m
pl

ex
en

vi
ro

nm
en

t.

84 Planning with Collision Distance Estimator

Figure 5.2: Collision distance plots for optimized trajectories: ground truth, PairwiseNet,

and baseline methods.

5.3. Real-time Collision Avoidance for a Single-arm Robot System with Obstacles 85

5.3 Real-time Collision Avoidance for a Single-arm Robot

System with Obstacles

In this section, we demonstrate the application of our collision distance estimator to real-

time collision avoidance in a complex environment. This scenario showcases the fast

inference speed of our method for calculating collision distances and their derivatives,

which is crucial for reactive motion planning.

Our experimental setup consists of a single-arm robot system operating in an envi-

ronment with multiple obstacles. This setting, while less complex in terms of degrees

of freedom compared to the four-arm system, presents unique challenges due to the

presence of external obstacles.

We define a repulsion potential for collision avoidance that pushes the robot arm

away from obstacles. Traditionally, repulsion potentials need to be defined for each ob-

stacle individually, which involves calculating the minimum distance and its derivative

between every pair of elements. However, by employing our learning-based collision

distance estimator, the repulsion potential becomes much simpler to define. In our ex-

periment, we apply a repulsion torque when the estimated collision distance falls below

a threshold (d̂col < ϵ). This torque acts in the direction that increases the collision dis-

tance, easily computed as the derivative of our trained model with respect to the joint

configuration (∇d̂col(q)).

Figure 5.3 illustrates this concept for a 2-dof planar robot, showing how the deriva-

tive directs movement towards increased collision distance. As the robot approaches the

upper right triangular obstacle (Figure 5.3 (a)), the current joint pose is marked as a

red dot in Figure 5.3 (b) and (c). Since the robot is near the obstacle, a repulsion force

is applied in the direction of the collision distance derivative ∇d̂col(q). This direction

guides the robot away from the obstacle. This can be conceptualized as a kind of spring

86 Planning with Collision Distance Estimator

∇ መ𝑑col(𝑞)

(c)

(𝑞1, 𝑞2)

𝑞1

𝑞2

𝑞2

−𝜋 𝜋
−𝜋

𝜋

𝑞1

(a) (b)

Figure 5.3: Illustration of a collision repulsion example for a simple toy case. (a) A 2-

dof planar robot (blue) and obstacles (red). (b) Joint configuration space with collision

distance contour plot. Colors denote the collision distance, increasing from blue (low)

to red (high). Black lines indicate collision boundaries where d̂col = 0, and black arrows

indicate the derivative ∇d̂col(q). (c) The red dot denotes the current joint pose, which is

near the upper right obstacle. The direction of the collision distance derivative ∇d̂col(q)

at this joint pose is the direction of increasing collision distance, which moves the robot

away from the obstacle.

5.3. Real-time Collision Avoidance for a Single-arm Robot System with Obstacles 87

system attached at the collision boundary (d̂col = ϵ) defined in the joint configuration

space. We include a damping term to prevent the arm from bouncing off obstacles,

ensuring smoother and more stable motion.

Mathematically, the control torque can be expressed as:

τ = g(q) + 1d̂col(q)<ϵ

∇d̂col(q)

|∇d̂col(q)|

(
Kp(ϵ− d̂col(q))−Kd

˙̂
dcol(q)

)
, (5.3.2)

where g(q) denotes the gravity compensation torque, 1d̂col(q)<ϵ
represents an indicator

function that equals 1 when the estimated collision distance d̂col(q) is less than the

threshold ϵ and 0 otherwise, Kp ∈ R and Kd ∈ R are the proportional and derivative

gains respectively, and ∇d̂col(q) is the derivative of the estimated collision distance with

respect to the joint configuration.

This control scheme requires real-time calculation of collision distance and its deriva-

tive, benefiting greatly from learning-based collision distance estimators which can pro-

vide these values rapidly and efficiently. Specifically, due to the superior accuracy of

our method, we can effectively control the robot in our complex system, which involves

a robot arm navigating among intricate, concave obstacles such as shelves - a scenario

that poses significant challenges for existing approaches.

We conducted an experiment to validate the effectiveness of our collision avoidance

system by freely pushing the robot towards obstacles while applying the aforementioned

control scheme. Our control method only applies gravity compensation when the robot

is far from obstacles, allowing it to move freely in response to external forces. However,

as the robot approaches an obstacle and the collision distance falls below the thresh-

old, the collision repulsion torque activates, ensuring that the robot maintains a safe

distance from the obstacle while continuing to move. This behavior results in smooth,

collision-free motion even when external forces that may occur collisions with obstacles

are applied.

88 Planning with Collision Distance Estimator

External Force

Maintain collision-free

External Force

Maintain
collision-free

(a)

(b)

Figure 5.4: Real-time collision avoidance demonstration. (a) Robot arm maintaining safe

distance from a table despite external forces. (b) Arm navigating within a complex shelf

structure, demonstrating stable collision avoidance in confined spaces.

5.4. Conclusion 89

Figure 5.4 presents a series of sequential snapshots from our experiment. We applied

external forces to the freely movable robot arm, attempting to cause collisions with

obstacles. As the arm approaches a table, we observe that repulsion torques activate in

the direction that increases the collision distance, maintaining a collision-free state while

the arm continues to move (Figure 5.4 (a)). Furthermore, even when the robot arm is

positioned within a complex, concave structure like a shelf, it accurately estimates the

distance to each wall of the shelf. This enables the arm to operate stably while avoiding

collisions in this challenging environment (Figure 5.4 (b)). These results demonstrate the

effectiveness of our approach in real-time collision avoidance, even in complex robot

systems. The complete experiment can be viewed in the supplementary1video.

5.4 Conclusion

In conclusion, this chapter has demonstrated the practical effectiveness of our novel

learning-based collision distance estimator in complex path planning scenarios. Thro-

ugh two challenging applications - offline trajectory optimization for a 28-dof four-arm

robot system and real-time collision avoidance for a single-arm robot navigating ob-

stacles - we have showcased the unique strengths of our approach. Our method has

proven its capability in leveraging the general advantages of learning-based estimators,

including rapid calculation of collision distances, efficient batch processing, and deriva-

tive computation. More importantly, it has demonstrated superior accuracy in complex,

high-dof configurations where traditional methods often fall short.

The offline trajectory optimization task highlighted our estimator’s ability to handle

intricate multi-arm scenarios, efficiently processing multiple joint configurations simul-

taneously. The real-time collision avoidance experiment, on the other hand, emphasized
1https://youtu.be/PloLnzSc0d0

https://youtu.be/PloLnzSc0d0

90 Planning with Collision Distance Estimator

the method’s fast inference speed and accuracy in robot systems with complex obstacles.

These results underscore the versatility and robustness of our approach in address-

ing complex robotic planning challenges. By providing accurate, real-time collision dis-

tance estimates even in highly complex scenarios, our method opens up new possibilities

for advanced robot control and automation in challenging environments. The success in

these applications suggests that our approach could significantly enhance the capabilities

of robots in various fields, from industrial automation to service robotics, where precise

navigation in complex environments is crucial.

6
Conclusion

6.1 Summary

This thesis has addressed critical challenges in collision distance estimation for com-

plex, high-dof robot systems. Through the development of novel approaches, we have

significantly advanced the state-of-the-art in both the methodology and practical appli-

cation of collision distance estimation. Our contributions offer more accurate, efficient,

and adaptable solutions, particularly for scenarios involving high-dof robot systems. The

methods presented in this thesis have important implications for enhancing the capabil-

ities of robots in various applications, from industrial automation to service robotics,

where precise planning in complex environments is crucial.

The key contributions of this thesis are:

• Active Learning of the Collision Distance Function

We proposed an innovative active learning strategy for high-dof robot systems that

91

92 Conclusion

overcomes the limitations of existing learning-based methods. Our approach fo-

cuses on sampling near-boundary configurations in high-dimensional configuration

spaces, addressing the challenge of exponential growth in data requirements as

the dof of the system increase. By maintaining a fixed-size training dataset that is

continuously updated with these new data points, we ensure that the model learns

from the most informative data points. Experimental evaluations on high-dof robot

systems demonstrated substantial performance improvements over existing state-

of-the-art methods, validating the effectiveness of our approach.

• PairwiseNet: Pairwise Collision Distance Learning

Addressing the limitations of simplistic input representations and model structures

in capturing complex collision distance functions for high-dof robot systems, we

first explored a link SE(3) configuration space representation. This approach, in-

corporating additional rotational information of links, showed improvements over

simpler input representations. However, recognizing that this alone was insufficient

to tackle the inherently complex and non-smooth nature of the global collision

distance function, we developed PairwiseNet, a novel collision distance estima-

tion method.

PairwiseNet provides a promising alternative to existing data-driven approaches

by focusing on predicting the pairwise collision distances rather than directly es-

timating the global collision distance. This approach simplifies the learning task

by breaking down the complex, non-smooth global collision distance function into

more manageable sub-problems. As a result of this innovative approach, Pair-

wiseNet demonstrates superior performance compared to existing state-of-the-art

methods in collision distance estimation for complex robotic systems.

An additional advantage of PairwiseNet is its remarkable generalizability to minor

6.2. Future Work 93

environmental changes, which allows its applicability to various robot configura-

tions without requiring retraining. This flexibility allows PairwiseNet to adapt to

systems with multiple arms or changed base positions, as long as the constituent

shape elements remain consistent with those used during training. Our evaluations

on high-dof multi-arm systems (from 14-dof two-arm to 28-dof four-arm configu-

rations) and single-arm robots with obstacles demonstrated PairwiseNet’s superior

performance in terms of various performance metrics.

Furthermore, we demonstrated the practical applications of our collision distance

estimation methods in challenging path planning scenarios. Our approach showcased

exceptional accuracy and efficiency in complex, high-dof configurations where existing

methods often struggle. We leveraged the key advantages of our learning-based esti-

mators, including rapid calculation of collision distances, batch processing capabilities,

and efficient computation of distance derivatives. Two significant applications were pre-

sented: offline trajectory optimization for a 28-dof four-arm robot system, and real-time

collision avoidance for a single-arm robot system with obstacles. The success in these

challenging scenarios underscores the versatility and superior performance of our colli-

sion distance estimation techniques in addressing complex path planning challenges.

6.2 Future Work

The generalizability of PairwiseNet is currently limited to systems that exclusively con-

sist of known shape elements. Given the significant impact of generalization to handle

unseen objects on PairwiseNet’s practical applicability, we conducted additional exper-

iments investigating its potential (detailed in Appendix B.6). Leveraging PairwiseNet’s

encoder architecture, which transforms object geometries into shape feature vectors, our

model demonstrates modest performance in the environment containing unseen objects.

94 Conclusion

While these experimental results are currently limited to simple objects with dimen-

sional variations, they reveal the encoder’s ability to capture generalizable geometric

features rather than merely memorizing specific configurations. Future work is aimed

at enhancing the generalizability of PairwiseNet to systems with unseen objects, which

could involve constructing diverse datasets containing link geometries of other robot

arms and various objects, and incorporating techniques to handle unknown or novel

shape elements [48].

A
Appendix: Active Learning of the

Collision Distance Function

A.1 Hyperparameters of our Active Learning-based Train-

ing Procedure

Table A.1 presents the key hyperparameters employed in our active learning-based train-

ing procedure. The process involves Nactive = 20 iterations, each consisting of model

training and dataset update phases. During each iteration, the model is trained for Nepoch =

1000 epochs, ensuring sufficient learning from the current dataset. The parameter k =

100000 represents the number of new configurations sampled in each iteration; with the

total dataset containing a million data points, this updates 10% of the dataset per itera-

tion. The parameters of MCMC sampling (σe, σ, umin, max_step) are carefully tuned

to suitably and stably sample new data points near collision boundaries.

Since the parameter k, representing the number of newly sampled data points in

95

96 Appendix: Active Learning of the Collision Distance Function

Table A.1: Hyperparameters for our active learning-based training procedure

Nactive Nepoch k σe σ umin max_step

20 1000 100000 0.1 0.05 0.8 1000

each iteration, is the core parameter of the proposed active learning-based training pro-

cedure, we conducted an additional ablation study to analyze how the choice of k in-

fluences learning performance. The experiments were performed on the two-arm envi-

ronment shown in Figure 3.5(a) using the simplest JointNN model. We examined how

performance changed during active learning iterations by varying the replacement ratio

(the ratio of k to the total dataset size) from 5% to 80%.

Figure A.1 shows four performance metrics plotted against the number of active

learning iterations on the x-axis. Each model was trained five times with different ran-

dom seeds, with solid lines representing the mean performance and shaded regions in-

dicating the standard deviation. The replacement ratios used in each model’s training

are indicated by colors, ranging from yellow (lower ratios) to purple (higher ratios).

The results demonstrate that model performance improves with active learning iterations

before eventually converging to a certain level. Performance tends to slightly improve

with higher replacement ratios, which can be merely attributed to the increased vol-

ume of training data (initial dataset + k ×Nactive data points). While higher values of

k can yield these modest performance gains, they also demand greater computational

resources, necessitating a careful balance between these competing factors. We did not

employ higher k values in our main experiments since improving performance simply

by using more data diverges from our paper’s focus on optimizing data distribution un-

der computational constraints. However, using larger k values could be considered when

computational resources are abundant and maximum performance is the primary goal.

A.1. Hyperparameters of our Active Learning-based Training Procedure 97

0 5 10 15 20

0.975

0.976

0.977

0.978

0.979

0.98

0.981

0.982

0 5 10 15 20

0.9935

0.994

0.9945

0.995

0.9955

0.996

0.9965

0 5 10 15 20

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91

0 5 10 15 20

0.945

0.95

0.955

0.96

0.965

0.97

10

20

30

40

50

60

70

80

R
ep

la
ce

m
en

t R
at

io
Active Learning Iteration Active Learning Iteration

A
cc

ur
ac

y

A
U

R
O

C

ne
ar

-A
cc

ur
ac

y

ne
ar

-A
U

R
O

C

Accuracy AUROC

near-Accuracy near-AUROC

Figure A.1: Performance evaluation of model training with different replacement ratios

over active learning iterations, showing Accuracy, AUROC, near-Accuracy, and near-

AUROC metrics.

98 Appendix: Active Learning of the Collision Distance Function

A.2 Impact of Exploration-Exploitation Balance on Model

Performance

The exploration-exploitation trade-off is a widely studied challenge across many re-

search domains, particularly in active learning, where finding the right balance between

these competing factors is crucial. In our proposed active learning-based training proce-

dure, generating data points near collision boundaries can be interpreted as exploitation,

while sampling data points from a uniform distribution represents exploration. While our

current approach relies on exploration only through the initial dataset, it may be bene-

ficial to incorporate some exploration into our active learning-based training procedure.

To investigate this possibility, we conducted additional experiments.

In each active learning iteration, k new data points are generated and incorporated

into the dataset. We modified the sampling process by varying the proportion of these

k points that come from uniform sampling (exploration) rather than boundary sampling.

We tested exploration ratios ranging from 0% (equivalent to our original proposed met-

hod) to 100% (purely uniform sampling), using the same experimental setup and model

configuration as described in Appendix A.1.

Figure A.2 presents the results across different exploration ratios. Each experiment

was repeated five times with different random seeds, with solid lines showing the mean

performance and shaded regions indicating the standard deviation. The results show that

the original method (0% exploration ratio) and configurations with low exploration ra-

tios (10% and 20%) achieve superior performance across all metrics. Performance tends

to decline as the exploration ratio increases, with purely exploratory sampling (100%)

showing the poorest results. This indicates that the performance improvements from

our active learning-based training procedure stem primarily from effectively focusing

A.2. Impact of Exploration-Exploitation Balance on Model Performance 99

0 5 10 15 20

0.975

0.976

0.977

0.978

0.979

0.98

0.981

0 5 10 15 20

0.9935

0.994

0.9945

0.995

0.9955

0.996

0 5 10 15 20

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0 5 10 15 20

0.945

0.95

0.955

0.96

0.965

0

20

40

60

80

100

E
xp

lo
ra

tio
n

R
at

io
Active Learning Iteration Active Learning Iteration

A
cc

ur
ac

y

A
U

R
O

C

ne
ar

-A
cc

ur
ac

y

ne
ar

-A
U

R
O

C

Accuracy AUROC

near-Accuracy near-AUROC

Figure A.2: Performance evaluation of model training with different exploration ratios

over active learning iterations, showing Accuracy, AUROC, near-Accuracy, and near-

AUROC metrics.

100 Appendix: Active Learning of the Collision Distance Function

on critical regions rather than simply utilizing more data points. While pure exploita-

tion performed well in our experiments, incorporating some level of exploration might

be beneficial for robot systems with more complex collision area in the configuration

space, where relying solely on exploitation could potentially be problematic.

A.3 Comparison with Existing Balanced Dataset Genera-

tion Method

Most data-driven methods for learning collision distance functions generate datasets ran-

domly, without regard for the collision boundary. An exception is found in [27, 28],

where they generate a balanced dataset. Their approach aims for a composition of 50%

collision data points (dcol < 1cm), 35% near-collision (but non-collision) data points

(1cm < dcol < 5cm), and 15% non-collision data points (dcol > 5cm).

This generation process relies on rejection sampling: for near-collision joint config-

urations, a joint configuration is first sampled from a uniform distribution within the

joint limits. It is accepted if its collision distance falls within the near-collision range

(1cm < dcol < 5cm) and rejected otherwise. The efficiency of this rejection sampling

heavily depends on the disparity between the sampling distribution (uniform within joint

limits) and the target distribution (1cm < dcol < 5cm).

If the volume of the near-collision region in the joint configuration space is rel-

atively small, the probability of rejecting sampled data points increases significantly.

Consequently, the number of required samples and collision distance calculations can

far exceed the desired number of data points. In our multi-arm robot systems, we need

to calculate collision distances more than 9 times the desired number of data points (one

million) while generating the balanced datasets. This inefficiency can worsen further as

the near-collision region’s volume in the joint configuration space decreases, potentially

A.3. Comparison with Existing Balanced Dataset Generation Method 101

Table A.2: Performance comparison: our active learning-based training versus balanced

dataset approach

Env. Model Training
Accuracy

(ϵ=0.0)
AUROC

near-Accuracy

(ϵ=0.0)
near-AUROC

Fig. 3.5

(Two arms)
JointNN

none 0.9765 0.9942 0.8799 0.9491

balanced 0.9767 0.9942 0.8854 0.9552

active 0.9809 0.9960 0.9018 0.9643

Fig. 3.5

(Three arms)
JointNN

none 0.9691 0.9868 0.8189 0.8875

balanced 0.8887 0.9118 0.6422 0.7229

active 0.9765 0.9918 0.8609 0.9280

leading to even higher sampling and calculation requirements.

Despite the considerable time required for generation, we produced a balanced dataset

and conducted experiments to evaluate the performance of two models: one trained with

the existing balanced dataset approach, and another trained using our proposed active

learning-based training framework.

Table A.2 presents a performance comparison between our active learning-based

training approach and the balanced dataset approach. The results reveal several key in-

sights. Firstly, for both target environments, the balanced dataset approach shows no sig-

nificant performance improvement compared to the uniformly sampled dataset (denoted

as none). In fact, for the three-arm robot system, the balanced dataset approach per-

forms worse than the uniform sampling. In contrast, our active learning-based training

procedure successfully enhances performance across all metrics, with particularly no-

table improvements in the near-collision metrics (near-Accuracy and near-AUROC). It’s

worth noting that during our experiments, we observed that training with the balanced

102 Appendix: Active Learning of the Collision Distance Function

dataset was relatively unstable, resulting in performance variations across different ran-

dom seeds. The results presented in Table A.2 for the balanced approach represent the

best outcomes from five training trials. In summary, our method of iteratively sampling

points near the estimated collision boundary and updating the training dataset not only

allows for more efficient computation in dataset generation but also leads to more sta-

ble training and more effective performance improvement. This approach proves superior

to the balanced dataset method, which samples points near the ground truth collision

boundary only once for the initial dataset.

B
Appendix: PairwiseNet

B.1 Hyperparameters of PairwiseNet and Baseline Meth-

ods

Table B.1 presents the hyperparameters employed in our experiments for training Pair-

wiseNet and baseline methods. For PairwiseNet, we used a batch size of 1000, a learn-

ing rate of 1e-3, and trained for 2000 epochs. In contrast, ClearanceNet, one of our

baseline methods, was trained with a smaller batch size of 191, a lower learning rate

of 1.75e-4, and for 400 epochs, which are reported as the optimal values in [31]. Other

neural network baselines were trained with a batch size of 10000, a learning rate of

1e-3, and for 10000 epochs. Specific to PairwiseNet’s architecture, hyperparameters of

EdgeConv layers are set to the default values provided by [46]. Each shape element

in our point cloud data representation comprises 100 points, providing a detailed yet

manageable geometric description.

103

104 Appendix: PairwiseNet

Table B.1: Hyperparameters for training PairwiseNet and baseline methods

hyperparameter value

batch size, learning rate, epoch for PairwiseNet 1000, 1e-3, 2000

batch size, learning rate, epoch for ClearanceNet 191, 1.75e-4, 400

batch size, learning rate, epoch for other NN baselines 10000, 1e-3, 10000

k for k-nearest neighbor of EdgeConv layers 5

of points in the point cloud data of an shape element 100

hidden nodes of EdgeConv layers 64

B.2 Geometric Representations of Robot Links for Colli-

sion Checking

For efficient collision checking, we construct three different geometric representations of

the robot links: original mesh, convex mesh, and capsule primitives. The original mesh

representation preserves all geometric details of each robot link, including non-convex

features, ensuring the most accurate collision distance calculations. For faster computa-

tion, we create simplified convex meshes by computing the convex hull of each original

mesh, which reduces geometric complexity while maintaining a reasonable approxima-

tion of the link shape. As shown in Table B.2, this convex hull approximation signif-

icantly reduces the geometric complexity - the number of vertices and triangles in the

convex meshes are about 1/300 of those in the original meshes. Figure B.1 illustrates

these geometric representations on the three-arm robot system, demonstrating how the

convex hull approximation (middle) simplifies the detailed original mesh geometry (left)

while preserving the essential shape characteristics for collision checking.

For even faster collision distance calculations, we also construct capsule-shaped col-

lision primitives for each robot link (right in Figure B.1). Following the methodology

B.2. Geometric Representations of Robot Links for Collision Checking 105

Table B.2: Geometric complexity of original and simplified convex meshes for Panda

robot links
of vertices / # of triangles

Original mesh Convex mesh

Link 0 59517 / 20483 102 / 200

Link 1 37309 / 12516 152 / 300

Link 2 37871 / 12716 152 / 300

Link 3 42510 / 14233 152 / 300

Link 4 43506 / 14621 152 / 300

Link 5 54751 / 18327 152 / 300

Link 6 63895 / 21620 102 / 200

Link 7 35768 / 12082 102 / 200

Figure B.1: Three geometric representations of Panda robot links.

106 Appendix: PairwiseNet

𝑎𝑖

𝑏𝑖

𝑟𝑖

Figure B.2: Illustration of capsule geometry with optimized parameters. The capsule is

defined by two end points (ai and bi) and a radius (ri).

of [38], we formulate an optimization problem to create minimal volume capsules that

encapsulate all vertices of the link meshes:

minimize
ai,bi,ri

||ai − bi||πr2i +
4

3
πr3i (B.2.1)

subject to dist(p, aibi) ≤ ri, ∀p ∈ Vi (B.2.2)

Here, i denotes the link index, Vi represents the vertices of the ith link mesh, and

ai, bi ∈ R3 and ri ∈ R refer to the two endpoints and the radius of a capsule, re-

spectively. The line segment connecting the two endpoints is denoted as aibi. Using

these capsule approximations, the collision distance calculation reduces to finding the

minimum distance between capsules, which is computationally much simpler than mesh-

based calculations.

The geometric approximations using convex meshes and capsule primitives, and our

proposed PairwiseNet, are all approximations of the true collision distances computed

from original detailed meshes. To evaluate the accuracy of these approximation meth-

ods, we measured the mean squared error (MSE) between the true collision distances

B.3. The Collision-free Guaranteed Threshold 107

Table B.3: Comparison of collision distance estimation errors across different geometric

approximations and PairwiseNet

Approximation error (MSE)

Two arms Three arms Four arms

Convex mesh 4.55e-4 2.27e-4 1.61e-4

Capsule 1.38e-3 1.05e-3 3.37e-3

PairwiseNet 0.24e-4 0.24e-4 0.46e-4

and the approximated distances from each method. As shown in Table B.3, all methods

demonstrate relatively small approximation errors across different multi-arm configura-

tions. While the convex mesh approximation maintains reasonable accuracy by preserv-

ing the overall shape of the links, the capsule primitives show slightly larger errors due

to their simplified geometric representation. PairwiseNet achieves comparable or better

approximation accuracy, suggesting that it can serve as a novel alternative to classical

methods that rely on simplified geometric representations.

B.3 The Collision-free Guaranteed Threshold

The collision-free guaranteed threshold ϵsafe refers to a predefined distance value that is

established in collision distance estimation methods. This threshold is set to ensure that

during testing or actual operation, the estimated collision distance remains above this

threshold for all valid configurations or movements of the robot system. In other words,

if the estimated collision distance between the robot and any obstacles remains above

the collision-free guaranteed threshold (Fψ(q; fψ,S) > ϵsafe), it is considered safe and

collision-free. In our experiments, we set the collision-free guaranteed threshold to the

least conservative value that allows us to classify all the collision configurations in the

108 Appendix: PairwiseNet

Table B.4: The collision-free guaranteed thresholds of PairwiseNet and baseline methods

Methods Two arms Three arms Four arms

Capsule 0.0 0.0 0.0

JointNN 0.2111 0.2015 0.2231

PosNN 0.1141 0.1189 0.1756

jointNERF 0.1661 0.1734 0.2001

ClearanceNet 0.2840 0.3713 0.4944

DiffCo -1.2789 -1.4672 -0.9535

PairwiseNet 0.0150 0.0152 0.0184

test dataset as collisions. These thresholds are then utilized for measuring the Safe-FPR.

B.4 Training Complexity of PairwiseNet

We utilized 3 million data points (3 million shape element pairs with their correspond-

ing distances) to train PairwiseNet for collision distance estimation in multi-arm robot

systems and for single-arm systems with obstacles. For a more detailed description of

the complexity of PairwiseNet’s training process, additional information is presented in

Table B.5.

• Unique element pairs refers to the count of element pairs in the system, excluding

those with duplicate shapes (for example, the pair of the robot arm’s seventh link

with the top shelf plate and the pair with the middle shelf plate are considered the

same since the shapes of the top and middle plates are identical). The more unique

element pairs, the greater the number of pairwise collision distances PairwiseNet

must learn, resulting in higher training complexity.

B.4. Training Complexity of PairwiseNet 109

Table B.5: Training Complexity of PairwiseNet

Training Env. Multi-arm Multi-arm
Single arm

w/ obstacles

Two arms

w/ obstacles

Unique element pairs 36 36 70 64

Training data points 1,000,000 3,000,000 3,000,000 1,000,000

Gradient steps 2,860,000 4,286,000 4,286,000 2,860,000

Training time elapsed (h) 24.8 35.6 36.1 23.3

Validation loss (MSE) 1.46e-5 1.43e-5 8.03e-6 9.82e-6

• Gradient step refers to the number of times the learnable parameters were updated

to minimize the loss during the training process.

• Training time elapsed refers to the total time taken to complete the training.

• The table also includes Validation loss to represent each training result.

The training time was measured on an environment with AMD Ryzen 9 7950X (16

cores, 32 threads), NVIDIA RTX 4090, and 125GB of RAM environment.

We conducted additional experiments to analyze the training complexity of Pair-

wiseNet. Initially, for the existing multi-arm robot systems, while we began with 3 mil-

lion data points for training PairwiseNet, we also conducted experiments using fewer

data points (1 million) and fewer gradient steps. While the training time decreased, the

learning results were comparable to those with the original 3 million data points.

Next, we examined the previously mentioned single-arm system with obstacles. Al-

though there were many unique element pairs (70), since all obstacle elements were

rectangular, they were relatively easier to learn. Additionally, we trained PairwiseNet

with a two-arm robot system, adding non-rectangular household objects as obstacles (as

shown in Figure B.3). Despite using merely a total of 1 million data points and fewer

110 Appendix: PairwiseNet

Can

Mug

Bowl 1

Bowl 2

1𝑚

Figure B.3: A two-arm robot system with four household objects

gradient steps in this scenario compared to the original PairwiseNet, the validation loss

was successfully reduced to 9.82e-6, confirming successful learning.

B.5 Comparison with Direct Point Cloud Distance Com-

putation

This section compares PairwiseNet’s approach to collision distance estimation with a

direct method of computing pairwise distances between every point in the point clouds.

While the direct method might seem intuitive, PairwiseNet offers several advantages in

terms of efficiency and scalability. The following subsections will examine these ad-

vantages in detail, focusing on GPU memory consumption, inference complexity, and

inference time on CPU.

B.5. Comparison with Direct Point Cloud Distance Computation 111

Table B.6: Inference time comparison: PairwiseNet versus direct point cloud distance

computation
Inference time for 1000 joint poses (s)

Two arms

(64 pairs)

Three arms

(192 pairs)

Four arms

(384 pairs)Method

CPU GPU CPU GPU CPU GPU

Direct distance 50.14 0.2325 151.4 0.3903 308.9 0.7966

Direct distance (Batch) 55.68 out of memory 174.7 out of memory

PairwiseNet 0.1054 0.0988 0.1590 0.0998 0.2025 0.1045

PairwiseNet (Batch) 0.0362 0.0207 0.1070 0.0224 0.2121 0.0253

GPU Memory Consumption. PairwiseNet is designed for efficient memory usage, re-

quiring only 67,585 parameters for the regressor network and the shape feature vec-

tors, totaling approximately 270kB. This efficiency is achieved by encoding each point

cloud data into a 32-dimensional feature vector, eliminating the need to store all point

cloud data in memory. In contrast, computing pairwise distances between every point in

two point clouds would necessitate storing all point cloud data in GPU memory, lead-

ing to significantly higher memory requirements. These higher memory requirements

might harm the batch computation capability of collision distances and their deriva-

tives, which is crucial for efficient planning and control algorithms. Our experimental

results, as shown in Table B.6, demonstrate that direct distance computation in batch

mode results in out-of-memory errors for all multi-arm robot systems, even when uti-

lizing Geforce RTX4090 with 24GB VRAM. PairwiseNet’s memory efficiency, on the

other hand, allows for larger batch sizes, enabling more effective parallel processing of

multiple configurations simultaneously, even for complex multi-arm scenarios.

112 Appendix: PairwiseNet

Inference Complexity. The computational complexity and required memory usage of

direct point cloud distance calculation grows quadratically O(M2) with the number of

points M in each point cloud. This scaling makes the method less efficient for large

point clouds. Conversely, PairwiseNet’s inference complexity is independent of the num-

ber of points in the point cloud data, offering better scalability. This results in signif-

icantly longer inference times for direct computation compared to PairwiseNet. In our

experiments with 100 points per cloud, as shown in Table B.6, direct computation on

GPU took significantly longer than PairwiseNet – approximately 2.4 times longer for

two arms, 3.9 times longer for three arms, and 7.6 times longer for four arms. No-

tably, the performance gap widens for more complex robot systems containing more

element pairs, as evidenced by the increasing time difference across two-, three-, and

four-arm configurations. This indicates that the inference time of direct point cloud dis-

tance calculation is more sensitive to the number of element pairs in the system than

PairwiseNet. The performance gap becomes even more significant for batch mode oper-

ations, which are not feasible for direct point cloud distance calculation due to its large

GPU memory requirements.

Inference time on CPU PairwiseNet maintains short inference times even on CPU,

demonstrating its versatility across different hardware configurations. Our experimental

results, as shown in Table B.6, highlight the stark contrast in CPU performance between

PairwiseNet and direct point cloud distance calculation. For the two-arm configuration,

PairwiseNet completes inference in just 0.1054 seconds, while direct calculation takes

50.14 seconds - a difference of nearly 476 times. This performance gap widens further

for more complex systems: in the three-arm scenario, PairwiseNet takes 0.1590 seconds

compared to 151.4 seconds for direct calculation (952 times slower), and in the four-arm

case, the times are 0.2025 seconds and 308.9 seconds respectively (1525 times slower).

B.6. Generalization Performance on Unseen Objects 113

These results demonstrate that direct pairwise calculation struggles to achieve compa-

rable efficiency without powerful GPU support, limiting its applicability in scenarios

where GPU resources are constrained or unavailable.

PairwiseNet’s design offers a balance between accuracy, computational efficiency,

and memory requirements. It provides a practical and versatile solution that scales well

with increasing point cloud size and remains efficient across various hardware configu-

rations. This comparison underscores PairwiseNet’s advantages in scenarios where com-

putational resources or memory are constrained, making it a more adaptable solution for

real-world robotics applications.

B.6 Generalization Performance on Unseen Objects

PairwiseNet’s architecture suggests potential generalization capabilities to unseen objects

through its encoder component, which transforms object geometries into shape feature

vectors. While not the primary focus of this work, generalization to unseen objects

would significantly enhance PairwiseNet’s practical applicability by enabling collision

detection across diverse real-world environments without requiring retraining. This po-

tential makes it worthwhile to investigate PairwiseNet’s performance on unseen objects.

To evaluate PairwiseNet’s generalization capability to unseen objects, we designed

two test environments as shown in Fig. B.4. Environment (a) consists of a Panda arm

with three boxes of different sizes (10cm, 20cm, and 30cm), which was used during

training. Environment (b) introduces two unseen boxes with different dimensions (15cm

and 25cm) to test the model’s ability to handle unseen objects. Table B.7 presents the

performance evaluation results in both environments. When tested on environment (b),

the performance shows some inevitable degradation but maintains reasonable accuracy,

achieving an MSE of 2.43e-4 and AUROC of 0.9962. This maintained performance

114 Appendix: PairwiseNet

on unseen objects suggests that PairwiseNet successfully learns generalizable geometric

features rather than merely memorizing specific configurations. These results indicate the

potential for broader generalization capabilities if the training dataset includes various

shape primitives and other robot arm link geometries, enabling the model to handle

diverse objects in real-world applications.

B.6. Generalization Performance on Unseen Objects 115

30 × 30 × 30

10 × 10 × 10

20 × 20 × 20

25 × 25 × 25

15 × 15 × 15

(a) (b)

Figure B.4: Test environments for evaluating shape generalization capability: (a) Train-

ing environment with three boxes of size 10cm, 20cm, and 30cm alongside a Panda

arm, and (b) Test environment with two unseen boxes of size 15cm and 25cm.

Table B.7: Performance evaluation of PairwiseNet’s generalization capability between

environments with different objects

MSE AUROC
Accuracy

(ϵ = 0)
safe-FPR

Fig.B.4 (a) 3.82e-5 0.9990 0.9845 0.1340

Fig.B.4 (b) 2.43e-4 0.9962 0.9698 0.1917

Bibliography

[1] KM Lynch. Modern Robotics. Cambridge University Press, 2017.

[2] Steven LaValle. Rapidly-exploring random trees: A new tool for path planning.

Research Report 9811, 1998.

[3] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient approach to

single-query path planning. In Proceedings 2000 ICRA. Millennium Conference.

IEEE International Conference on Robotics and Automation. Symposia Proceedings

(Cat. No. 00CH37065), volume 2, pages 995–1001. IEEE, 2000.

[4] Jinwook Huh and Daniel D Lee. Learning high-dimensional mixture models for

fast collision detection in rapidly-exploring random trees. In 2016 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pages 63–69. IEEE, 2016.

[5] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robots.

The international journal of robotics research, 5(1):90–98, 1986.

[6] Olivier Stasse, Adrien Escande, Nicolas Mansard, Sylvain Miossec, Paul Evrard,

and Abderrahmane Kheddar. Real-time (self)-collision avoidance task on a hrp-2

humanoid robot. In 2008 ieee international conference on robotics and automation,

pages 3200–3205. IEEE, 2008.

[7] Alexander Dietrich, Thomas Wimbock, Alin Albu-Schaffer, and Gerd Hirzinger.

Integration of reactive, torque-based self-collision avoidance into a task hierarchy.

IEEE Transactions on Robotics, 28(6):1278–1293, 2012.

[8] Cheng Fang, Alessio Rocchi, Enrico Mingo Hoffman, Nikos G Tsagarakis, and

Darwin G Caldwell. Efficient self-collision avoidance based on focus of interest for

116

BIBLIOGRAPHY 117

humanoid robots. In 2015 IEEE-RAS 15th International Conference on Humanoid

Robots (Humanoids), pages 1060–1066. IEEE, 2015.

[9] Juan José Quiroz-Omaña and Bruno Vilhena Adorno. Whole-body control with

(self) collision avoidance using vector field inequalities. IEEE Robotics and Au-

tomation Letters, 4(4):4048–4053, 2019.

[10] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE transactions on Systems Science and

Cybernetics, 4(2):100–107, 1968.

[11] Kang Shin and Neil McKay. A dynamic programming approach to trajectory plan-

ning of robotic manipulators. IEEE Transactions on Automatic Control, 31(6):491–

500, 1986.

[12] František Duchoň, Andrej Babinec, Martin Kajan, Peter Beňo, Martin Florek,

Tomáš Fico, and Ladislav Jurišica. Path planning with modified a star algorithm

for a mobile robot. Procedia engineering, 96:59–69, 2014.

[13] Tang XiangRong, Zhu Yukun, and Jiang XinXin. Improved a-star algorithm for

robot path planning in static environment. In Journal of Physics: Conference Se-

ries, volume 1792, page 012067. IOP Publishing, 2021.

[14] Byeongho Lee, Yonghyeon Lee, Seungyeon Kim, MinJun Son, and Frank C Park.

Equivariant motion manifold primitives. In 7th Annual Conference on Robot Learn-

ing, 2023.

[15] Yonghyeon Lee, Byeongho Lee, Seungyeon Kim, and Frank C Park. Motion man-

ifold flow primitives for language-guided trajectory generation. arXiv preprint

arXiv:2407.19681, 2024.

118 BIBLIOGRAPHY

[16] Yonghyeon Lee. Mmp++: Motion manifold primitives with parametric curve mod-

els. IEEE Transactions on Robotics, 2024.

[17] Evan Prianto, MyeongSeop Kim, Jae-Han Park, Ji-Hun Bae, and Jung-Su Kim.

Path planning for multi-arm manipulators using deep reinforcement learning: Soft

actor–critic with hindsight experience replay. Sensors, 20(20):5911, 2020.

[18] Mohak Bhardwaj, Balakumar Sundaralingam, Arsalan Mousavian, Nathan D

Ratliff, Dieter Fox, Fabio Ramos, and Byron Boots. Storm: An integrated frame-

work for fast joint-space model-predictive control for reactive manipulation. In

Conference on Robot Learning, pages 750–759. PMLR, 2022.

[19] Grady Williams, Andrew Aldrich, and Evangelos A Theodorou. Model predictive

path integral control: From theory to parallel computation. Journal of Guidance,

Control, and Dynamics, 40(2):344–357, 2017.

[20] Ermano Arruda, Michael J Mathew, Marek Kopicki, Michael Mistry, Morteza

Azad, and Jeremy L Wyatt. Uncertainty averse pushing with model predictive path

integral control. In 2017 IEEE-RAS 17th International Conference on Humanoid

Robotics (Humanoids), pages 497–502. IEEE, 2017.

[21] Corrado Pezzato, Chadi Salmi, Max Spahn, Elia Trevisan, Javier Alonso-Mora, and

Carlos Hernández Corbato. Sampling-based model predictive control leveraging

parallelizable physics simulations. arXiv preprint arXiv:2307.09105, 2023.

[22] Seungyeon Kim, Byeongdo Lim, Yonghyeon Lee, and Frank C Park. Se (2)-

equivariant pushing dynamics models for tabletop object manipulations. In Con-

ference on Robot Learning, pages 427–436. PMLR, 2023.

BIBLIOGRAPHY 119

[23] Seungyeon Kim, Young Hun Kim, Yonghyeon Lee, and Frank C Park. Leverag-

ing 3d reconstruction for mechanical search on cluttered shelves. In 7th Annual

Conference on Robot Learning, 2023.

[24] Nikhil Das, Naman Gupta, and Michael Yip. Fastron: An online learning-based

model and active learning strategy for proxy collision detection. In Conference on

Robot Learning, pages 496–504. PMLR, 2017.

[25] Nikhil Das and Michael Yip. Learning-based proxy collision detection for robot

motion planning applications. IEEE Transactions on Robotics, 36(4):1096–1114,

2020.

[26] Yuheng Zhi, Nikhil Das, and Michael Yip. Diffco: Autodifferentiable proxy colli-

sion detection with multiclass labels for safety-aware trajectory optimization. IEEE

Transactions on Robotics, 38(5):2668–2685, 2022.

[27] Nadia Barbara Figueroa Fernandez, Seyed Sina Mirrazavi Salehian, and Aude Bil-

lard. Multi-arm self-collision avoidance: A sparse solution for a big data problem.

In Proceedings of the Third Machine Learning in Planning and Control of Robot

Motion (MLPC) Workshop, 2018.

[28] Mikhail Koptev, Nadia Figueroa, and Aude Billard. Real-time self-collision avoid-

ance in joint space for humanoid robots. IEEE Robotics and Automation Letters,

6(2):1240–1247, 2021.

[29] Javier Muñoz, Peter Lehner, Luis E Moreno, Alin Albu-Schäffer, and Máximo A

Roa. Collisiongp: Gaussian process-based collision checking for robot motion plan-

ning. IEEE Robotics and Automation Letters, 8(7):4036–4043, 2023.

120 BIBLIOGRAPHY

[30] Daniel Rakita, Bilge Mutlu, and Michael Gleicher. Relaxedik: Real-time synthesis

of accurate and feasible robot arm motion. In Robotics: Science and Systems,

volume 14, pages 26–30. Pittsburgh, PA, 2018.

[31] J Chase Kew, Brian Ichter, Maryam Bandari, Tsang-Wei Edward Lee, and Alek-

sandra Faust. Neural collision clearance estimator for batched motion planning. In

International Workshop on the Algorithmic Foundations of Robotics, pages 73–89.

Springer, 2020.

[32] Yeseung Kim, Jinwoo Kim, and Daehyung Park. Graphdistnet: A graph-based

collision-distance estimator for gradient-based trajectory optimization. IEEE

Robotics and Automation Letters, 7(4):11118–11125, 2022.

[33] Jihwan Kim and Frank Chongwoo Park. Active learning of the collision distance

function for high-dof multi-arm robot systems. Robotica, pages 1–15, 2024.

[34] Jihwan Kim and Frank C Park. Pairwisenet: Pairwise collision distance learning

for high-dof robot systems. In Conference on Robot Learning, pages 2863–2877.

PMLR, 2023.

[35] Elmer G Gilbert, Daniel W Johnson, and S Sathiya Keerthi. A fast procedure for

computing the distance between complex objects in three-dimensional space. IEEE

Journal on Robotics and Automation, 4(2):193–203, 1988.

[36] Gino Van Den Bergen. Proximity queries and penetration depth computation on

3d game objects. In Game developers conference, volume 170, page 209, 2001.

[37] Panpan Cai, Chandrasekaran Indhumathi, Yiyu Cai, Jianmin Zheng, Yi Gong,

Teng Sam Lim, and Peng Wong. Collision detection using axis aligned bound-

ing boxes. Simulations, Serious Games and Their Applications, pages 1–14, 2014.

BIBLIOGRAPHY 121

[38] Antonio El Khoury, Florent Lamiraux, and Michel Taix. Optimal motion plan-

ning for humanoid robots. In 2013 IEEE international conference on robotics and

automation, pages 3136–3141. IEEE, 2013.

[39] Jia Pan, Sachin Chitta, and Dinesh Manocha. Fcl: A general purpose library

for collision and proximity queries. In 2012 IEEE International Conference on

Robotics and Automation, pages 3859–3866. IEEE, 2012.

[40] Jing-Sin Liu, Wen-Hua Pan, Wen-Yang Ku, Y-H Tsao, and Y-Z Chang. Simulation-

based fast collision detection for scaled polyhedral objects in motion by exploiting

analytical contact equations. Robotica, 34(1):118–134, 2016.

[41] Charles J Geyer. Practical markov chain monte carlo. Statistical science, pages

473–483, 1992.

[42] Siddhartha Chib and Edward Greenberg. Understanding the metropolis-hastings

algorithm. The american statistician, 49(4):327–335, 1995.

[43] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation

for games, robotics and machine learning, 2016.

[44] Yiheng Han, Wang Zhao, Jia Pan, and Yong-Jin Liu. Configuration space de-

composition for learning-based collision checking in high-dof robots. In 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 5678–5684. IEEE, 2020.

[45] Qingyang Tan, Zherong Pan, and Dinesh Manocha. Lcollision: Fast generation of

collision-free human poses using learned non-penetration constraints. In Proceed-

ings of the AAAI Conference on Artificial Intelligence, volume 35, pages 3913–

3921, 2021.

122 BIBLIOGRAPHY

[46] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and

Justin M Solomon. Dynamic graph cnn for learning on point clouds. ACM Trans-

actions on Graphics (tog), 38(5):1–12, 2019.

[47] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.

Pytorch: An imperative style, high-performance deep learning library. Advances in

neural information processing systems, 32, 2019.

[48] Seungyeon Kim, Taegyun Ahn, Yonghyeon Lee, Jihwan Kim, Michael Yu Wang,

and Frank C Park. Dsqnet: a deformable model-based supervised learning algo-

rithm for grasping unknown occluded objects. IEEE Transactions on Automation

Science and Engineering, 20(3):1721–1734, 2022.

국문초록

충돌 거리 추정은 로봇 경로 계획 및 장애물 회피에 있어 중요한 요소이다. 전통적인

기하학적 알고리즘은 단순한 시스템에는 효과적이지만, 복잡하고 고자유도를 가진 로

봇 시스템에서는 계산 속도, 배치 처리, 미분 계산에 있어 한계를 보인다. 이러한 한

계로 인해 충돌 거리 추정을 위한 학습 기반 접근법들이 개발되고 있다.

그러나 기존의 학습 기반 방법들은 복잡한 고자유도 로봇 시스템에 적용될 때 중

요한 도전 과제에 직면한다. 이러한 과제들은 구성 공간의 지수적 증가로 인한 데이터

셋 구축의 어려움, 충돌 거리 함수의 본질적 복잡성, 그리고 사소한 환경 변화에 대한

제한된 일반화 능력을 포함한다. 따라서 더욱 정교하고 적응 가능한 충돌 거리 추정

기술의 필요성이 대두되고 있다.

본 논문은 이러한 과제들을 해결하기 위한 두 가지 주요 기여를 제시한다. 첫째, 고

자유도 로봇 시스템에서 효율적인 데이터셋 구축을 위한 능동 학습 전략을 소개한다.

이 방법은 충돌 경계 근처의 가장 정보가 풍부한 구성을 샘플링하는 데 중점을 두어,

훈련 데이터의 품질을 크게 향상시키고 특히 중요한 영역에서 모델 성능을 개선한다.

둘째, 쌍별 충돌 거리 학습을 위한 혁신적인 방법인 PairwiseNet을 제안한다. Pair-

wiseNet은 전체 시스템의 충돌 거리를 직접 추정하는 대신, 로봇 시스템 내 요소 쌍

간의 최소 거리를 예측하는 데 중점을 둔다. 이 접근 방식은 학습 과제를 단순화하고

다양한 로봇 구성에 걸쳐 탁월한 일반화 능력을 보여준다.

다중 팔 구성 및 장애물이 많은 환경에서의 단일 팔 로봇을 포함한 고자유도 로봇

시스템에 대한 광범위한 실험을 통해 우리의 접근 방식의 효과성을 검증했다. 결과는

기존 방법들과 비교하여 충돌 거리 회귀 오류, 충돌 검사 정확도, 그리고 거짓 양성

비율에서 상당한 개선을 보여준다. 우리의 기여는 복잡한 로봇 시스템을 위한 충돌

거리 추정 분야의 최신 기술을 발전시키며, 더욱 정확하고 효율적이며 적응 가능한

솔루션을 제공한다.

123

124

주요어: 충돌 거리 추정, 능동 학습, 데이터셋 구성, 쌍별 충돌 거리 추정, 충돌 회피,

경로 계획.

학번: 2019-24947

	Abstract
	List of Tables
	List of Figures
	Introduction
	Collision Distance Estimation for Path Planning
	Learning-based Collision Distance Estimation
	Dataset Construction
	Inherent Complexity of the Collision Distance Function
	Generalizability to Minor Environmental Changes

	Contribution
	Active Learning of the Collision Distance Function
	PairwiseNet: Pairwise Collision Distance Learning

	Organization

	Preliminaries: Collision Distance
	Introduction
	Collision Distance
	Classical Collision Distance Calculation

	Active learning of the Collision Distance Function
	Introduction
	Related Works
	Collision Distance Learning
	Problem Formulation
	Neural Network Model

	Methods
	Link SE(3) Configuration Space Representation
	Active Learning-based Training with Boundary Data Sampling

	Learning Performance Evaluation
	Evaluation Setting
	Evaluation Results
	Time and Memory
	Compared to Other Representations of SE(3)

	Real-world Experiments
	Conclusion

	PairwiseNet: Pairwise Collision Distance Learning
	Introduction
	Related Works
	Learning Pairwise Collision Distance
	Problem Formulation
	Strategy for Decomposing System Elements
	Network Architecture
	Efficient Inference Strategy of PairwiseNet

	Collision Distance Learning for Multi-arm Robot Systems
	Experimental Setting
	Results

	Collision Distance Learning for a Single-arm Systems with Obstacles
	Experimental Setting
	Results

	Inference Time of PairwiseNet
	Conclusion

	Planning with Collision Distance Estimator
	Introduction
	Offline Trajectory Optimization for a Four-arm Robot System
	Real-time Collision Avoidance for a Single-arm Robot System with Obstacles
	Conclusion

	Conclusion
	Summary
	Future Work

	Appendix: Active Learning of the Collision Distance Function
	Hyperparameters of our Active Learning-based Training Procedure
	Impact of Exploration-Exploitation Balance on Model Performance
	Comparison with Existing Balanced Dataset Generation Method

	Appendix: PairwiseNet
	Hyperparameters of PairwiseNet and Baseline Methods
	Geometric Representations of Robot Links for Collision Checking
	The Collision-free Guaranteed Threshold
	Training Complexity of PairwiseNet
	Comparison with Direct Point Cloud Distance Computation
	Generalization Performance on Unseen Objects

	Bibliography
	Abstract

